Alexa Discussion Board Skill

132901-Thumbnail Image.png
Description
A common challenge faced by students is that they often have questions about course material that they cannot ask during lecture time. There are many ways for students to have these questions answered, such as office hours and online discussion

A common challenge faced by students is that they often have questions about course material that they cannot ask during lecture time. There are many ways for students to have these questions answered, such as office hours and online discussion boards. However, office hours may be at inconvenient times or locations, and online discussion boards are difficult to navigate and may be inactive. The purpose of this project was to create an Alexa skill that allows users to ask their Alexa-equipped device a question concerning their course material and to receive an answer retrieved from discussion board data. User questions are mapped to discussion board posts by use of the cosine similarity algorithm. In this algorithm, posts from the discussion board and the user’s question are converted into mathematical vectors, with each term in the vector corresponding to a word. The values of these terms are computed based on the word’s frequency within the vector’s corresponding document, the frequency of that word within all the documents, and the length of the document. After the question and candidate posts are converted into vectors, the algorithm determines the post most similar to the user’s question by computing the angle between the vectors. With the most similar discussion board post determined, the user receives the replies to the post, if any, as their answer. Users are able to indicate to their Alexa device whether they were satisfied by the answer, and if they were unsatisfied then they are given the opportunity to either rephrase their question or to have the question sent to a database of unanswered questions. The professor can view and answer the questions in this database on a website hosted by use of Amazon’s Simple Storage Service. The Alexa skill does well at answering questions that have already been asked in the discussion board. However, the skill depends heavily on the user’s word choice. Two questions that are semantically identical but different in phrasing are often given different answers. This is because the cosine algorithm measures similarity on the basis of word overlap, not semantic meaning, and thus the application never truly “understands” what type of answer the user desires. Improving the performance of this Alexa skill will require a more advanced question answering algorithm, but the limitations of Amazon Web Services as a development platform make implementing such an algorithm difficult. Nevertheless, this project has created the basis of a question answering Alexa skill by demonstrating a feasible way that the resources offered by Amazon can be utilized in order to build such an application.
Date Created
2019-05
Agent