Enhancing Escherichia coli Fermentative Performance with Lactobacillus plantarum WCFS1 Genes
Description
Renewable bioproduction through fermentation of microbial species such as E. coli shows much promise in comparison to conventional fossil fuel based chemical production. Although Escherichia coli is a workhorse for bioproduction, there are inherent limitations associated with the use of this organism which negatively affect bioproduction. One example is E. coli fermentative growth being less robust compared to some microbes such as Lactobacilli under anaerobic and microaerobic fermentation conditions. Identification and characterization of its fermentative growth constraints will help in making E. coli a better fermentation host. In this thesis, I demonstrate that Lactobacillus plantarum WCFS1 has desirable fermentative capabilities that may be transferrable to E. coli through genetic engineering to alleviate growth restraints. This has led to the hypothesis that these L. plantarum DNA sequences are transferrable through a genomic library. A background of comparative genomics and complementary literature review has demonstrated that E. coli growth may be hindered by stress from many toxin-antitoxin systems. L. plantarum WCFS1 optimizes amino acid catabolism over glycolysis to generate high ATP levels from reducing agents and proton motive force, and Lactobacilli are resistant to acidic environments and encodes a wide variety of acid transporters that could help E. coli fermentative growth. Since a great variety of L. plantarum genes may contribute to its fermentative capabilities, a gDNA library containing L. plantarum WCFS1 genes has been successfully constructed for testing in E. coli bioproducers to search for specific genes that may enhance E. coli fermentative performance and elucidate the molecular basis of Lactobacillus fermentative success.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Agent
- Co-author: Dufault, Matthew Elijah
- Co-author: Dufault, Matthew Elijah
- Thesis director: Wang, Xuan
- Committee member: Nielsen, David
- Committee member: Varman, Arul
- Contributor (ctb): School of Life Sciences
- Contributor (ctb): Barrett, The Honors College