An intimate view of the unique architecture of Harpegnathos saltwater nest using aluminum nest casts
Description
Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Agent
- Author (aut): Anderson, Clayton Edward
- Thesis director: Liebig, Juergen
- Committee member: Pratt, Stephen
- Contributor (ctb): School of Politics and Global Studies
- Contributor (ctb): Barrett, The Honors College