Analyzing SNPs Derived From High-Throughout RadSeq Method to Optimize Genetic Management of Captive Macaques

166220-Thumbnail Image.png
Description

The study of macaque monkeys harbors advancements in the field of biomedical research. It is imperative to understand the genetic composition of different species of macaques to assess their accuracy as non-human primate (NHP) models for disease detection and treatment

The study of macaque monkeys harbors advancements in the field of biomedical research. It is imperative to understand the genetic composition of different species of macaques to assess their accuracy as non-human primate (NHP) models for disease detection and treatment assessments. We sought to characterize the hybridization and admixture of the Southeast Asian macaques using single nucleotide polymorphism markers and analyzing the populations on the mainland and the island. Using AMOVA tests and STRUCTURE analysis, we determined that there are three distinct populations: Macaca mulatta, M. fascicularis fascicularis, and M. f. aurea. Furthermore, the island species holds an isolated population of M. f. aurea that demonstrate high inbreeding and genetic uniqueness compared to the mainland species. Findings from this study confirm that NHP models may need to be modified or updated according to changing allelic frequencies and genetic drift.

Date Created
2022-05
Agent

RFID Chip for DNA Tracking Identification

147676-Thumbnail Image.png
Description

A primary need of Forensic science is to individualize missing persons that cannot be identified after death. With the use of advanced technology, Radio Frequency Identification (RFID) implant chips can drastically improve digital tracking and enable robust biological and legal

A primary need of Forensic science is to individualize missing persons that cannot be identified after death. With the use of advanced technology, Radio Frequency Identification (RFID) implant chips can drastically improve digital tracking and enable robust biological and legal identification. In this paper, I will discuss applications between different microchip technologies and indicate reasons why the RFID chip is more useful for forensic science. My results state that an RFID chip is significantly more capable of integrating a mass volume of background information, and can utilize implanted individuals’ DNA profiles to decrease the missing persons database backlogs. Since today’s society uses a lot of digital devices that can ultimately identify people by simple posts or geolocation, Forensic Science can harness that data as an advantage to help serve justice for the public in giving loved ones closure.

Date Created
2021-05
Agent

From Report to Prosecution: A Comprehensive Approach to Sexual Assault Response in Arizona

132445-Thumbnail Image.png
Description
Every minute and a half, an American is sexually assaulted (Department of Justice, 2017). After an instance of sexual assault, some victims are given the choice of having a sexual assault evidence kit (SAK) collected. These kits are designed

Every minute and a half, an American is sexually assaulted (Department of Justice, 2017). After an instance of sexual assault, some victims are given the choice of having a sexual assault evidence kit (SAK) collected. These kits are designed to collect DNA evidence that will, in the best case scenario, result in the identification of the perpetrator. If the perpetrator cannot be located, the DNA profile can still be submitted to the FBI’s CODIS databank, which houses hundreds of thousands of DNA profiles from criminal cases, and may still lead to apprehension of the rapist. Unfortunately, some SAKs experience long delays, decades even, before being tested. To date, there are hundreds of thousands of untested SAKs that remain in police custody awaiting to be submitted for forensic profiling across the country. Here, we completed a holistic investigation of sexual assault response and SAK processing in Arizona. It is important to notice that the focus of our study not only includes SAK processing and the backlog but sexual assault prevention and improving victim reporting in an effort to understand the SAK “pipeline,” from assault to prosecution.
We identified problems in three major categories that negatively impact the SAK pipeline: historical inertia, legislative and institutional limitations, and community awareness. We found that a large number of SAKs in Arizona have remained untested due insufficient funding and staffing for public crime labs making it difficult for state labs to alleviate the SAK backlog while simultaneously responding to incoming cases (“Why the Backlog Exists,” n.d.). However, surveys of ASU undergraduate students revealed a significant interest in campus assault and the SAK backlog. Based on our findings, we suggest harnessing the interest of undergraduate students and recruiting them to specialized SAK-oriented forensic technician and sexual assault nurse examiner (SANE) training at ASU with the goal of creating a workforce that will alleviate the absence of trained professionals within the country. We also explore the possibility of the creation of a private crime laboratory at ASU devoted the processing of SAKs in Arizona as a measure of alleviating the demand on local public laboratories and providing a more economic alternative to commercial laboratories. The creation of an SAK laboratory at ASU would provide undergraduates the opportunity to learn more about real forensic analysis on campus, provide a pipeline for students to become technicians themselves, and help reduce and prevent a future SAK backlog in Arizona.
Date Created
2019-05
Agent

A protocol for Resolving Indeterminate Blood Phenotypes in Rhesus (Macaca mulatta) and Cynomolgus Macaques (M. fascicularis)

133485-Thumbnail Image.png
Description
Rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques are the most commonly used nonhuman primate models in biomedical research. It is therefore critical to correctly infer each study animal's ABO blood group phenotype to prevent fatal transfusion- and transplantation-induced immune

Rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques are the most commonly used nonhuman primate models in biomedical research. It is therefore critical to correctly infer each study animal's ABO blood group phenotype to prevent fatal transfusion- and transplantation-induced immune responses. While most macaques can be efficiently and accurately phenotyped using a DNA-based assay, we have identified some animals that are unable to be classified as type A, B, or AB and therefore exhibit an indeterminate phenotype. The purpose of this study was to develop a protocol for resolving indeterminate blood group phenotypes and consequently determine if these animals do indeed belong to an O blood phenotype. We attempted both direct and cloning-based sequencing of 21 animals phenotyped as A, B, AB, or indeterminate in order to assess variation at the functional mutation site in exon 7 of the macaque ABO gene. Although direct-from-PCR Sanger sequencing was unable to generate reliable sequence results, our cloned plasmid protocol yielded high quality sequences consistent with known blood group-specific alleles and as such can be used to identify informative polymorphisms at this locus.
Date Created
2018-05
Agent