The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

175253-Thumbnail Image.jpg
Description

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm. During the neurula stage of all vertebrate embryos (a), the neural crest is located in two places on the neural plate. As the neural tube forms (b), a process called neurulation, the neural crest moves with the folding plate as it forms the junction between the neural and epidermal ectoderm. NCCs migrate differently in different classes of vertebrates (c-f). For instance, in rats (c), the NCCs migrate away from the neural crest before neurulation completes and while the neural fold is still open. In birds (d and f), neural crest cells do not migrate until the neural fold closes. In amphibians (e and f), the neural crest cells migrate after neurulation completes, and only after the cells have accumulated above the neural tube. Subsequently, NCCs will all migrate down their specialized pathways and diversify into the several sub-types of NCCs.

Date Created
2014-08-21

Edward Drinker Cope's Law of Acceleration of Growth

173801-Thumbnail Image.png
Description

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional theory to natural selection. He argued that the evolution of genera, the more general groups within which biologists group species, occurs when the individual in a species move through developmental stages faster than did their ancestors, but within the same fixed period of gestation, and thus can undergo new developmental stages and develop new traits. The Law of Acceleration compliments Cope's Law of Retardation of Growth. He described the later law as the process by which organisms revert to an ancestral stage. In these cases, forces suppress the most recent traits or stages common to the development of individuals from different species within the same genus. Cope described evolution as progressive, following a predetermined path, a perspective about evolution sometimes called orthogenetic. Cope's was one among many orthogenic theories in the second half of the nineteenth century. Furthermore, the theory was part of a trend in nineteenth century in which some biologists claimed that the changes in developmental timing of organisms could explain large changes in biological forms throughout natural history.

Date Created
2014-07-24

The Origin of Species: "Chapter Thirteen: Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Organs" (1859), by Charles R. Darwin

173730-Thumbnail Image.png
Description

Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Organs is the thirteenth chapter of Charles Darwin's book The Origin of Species, first published in England in 1859. The book details part of Darwin's argument for the common ancestry of life

Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Organs is the thirteenth chapter of Charles Darwin's book The Origin of Species, first published in England in 1859. The book details part of Darwin's argument for the common ancestry of life and natural selection as the cause of speciation. In this chapter, Darwin summarizes the evidence for evolution by connecting observations of development in organisms to the processes of natural selection. Darwin shows how the theory of special creation, which claims that God directly created all organisms in their current form, is inferior to the theory of natural selection for its ability to explain the diversity of life. In this chapter, Darwin also discusses classification and homology as they relate to natural selection.

Date Created
2014-07-11

Stephen Jay Gould (1941-2002)

173320-Thumbnail Image.png
Description

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles Eldredge, proposed the theory of punctuated equilibrium, a view of evolution by which species undergo long periods of stasis followed by rapid changes over relatively short periods instead of continually accumulating slow changes over millions of years. In his 1977 book, Ontogeny and Phylogeny, Gould reconstructed a history of developmental biology and stressed the importance of development to evolutionary biology. In a 1979 paper coauthored with Richard Lewontin, Gould and Lewonitn criticized many evolutionary bioligists for relying solely on adaptive evolution as an explanation for morphological change, and for failing to consider other explanations, such as developmental constraints.

Date Created
2014-02-18

"The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme" (1979), by Stephen J. Gould and Richard C. Lewontin

172880-Thumbnail Image.png
Description

The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme, hereafter called
The Spandrels, is an article written by Stephen J. Gould and
Richard C. Lewontin published in the Proceedings of the

The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme, hereafter called
The Spandrels, is an article written by Stephen J. Gould and
Richard C. Lewontin published in the Proceedings of the Royal
Society of London in 1979. The paper emphasizes issues with
what the two authors call adaptationism or the adaptationist
programme as a framework to explain how species and traits evolved. The paper
is one in a series of works in which Gould emphasized the
role of development in evolutionary theories. The article suggests
that constraints on how organisms can develop and constraints on how species can evolve from others play a
central role in explaining the how species and traits evolve. The
authors note that organisms from different species develop as
embryos through stages similar across species, genera, and higher
classes. Gould and Lewontin hypothesize that those stages
constrained the possible pathways of evolution and has therefore
guided the history of life. Throughout the paper, the authors rely on analogy of some parts of organisms to architectural structures called spandrels, marked in this image as 'a'."

Date Created
2014-11-14

Ontogeny and Phylogeny (1977), by Stephen Jay Gould

172876-Thumbnail Image.png
Description

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of that organism's species (phylogeny). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in it's evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution. Gould notes that the concepts of acceleration and retardation during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection acts.

Date Created
2014-10-21

Franz Julius Keibel (1861-1929)

172789-Thumbnail Image.png
Description

Franz Keibel studied the embryos of humans and other animals in Europe at the turn of the twentieth century. He lived and worked in several different parts of Germany and France. Keibel drew illustrations of embryos in many stages of

Franz Keibel studied the embryos of humans and other animals in Europe at the turn of the twentieth century. He lived and worked in several different parts of Germany and France. Keibel drew illustrations of embryos in many stages of development. Keibel used these illustrations, which he and others in the scientific community called normal plates, to describe the development of organisms in several species of vertebrates. His illustrations are published in the sixteen-volume text Normentafeln zur Entwicklungsgeschichte der Wirbelthiere (Normal Plates of the Developmental history of Vertebrates), published in 1895, and in the Manual of Human Embryology, which he edited with Franklin Paine Mall of the US, published in 1912. Keibel's plates showed human embryos in different stages of development between the twelfth day and the second month after fertilization.

Date Created
2014-06-21

Karl Ernst von Baer's Laws of Embryology

172784-Thumbnail Image.png
Description

In 1828, while working at the University of Konigsberg in Konigsberg, Germany Karl Ernst von Baer proposed four laws of animal development, which came to be called von Baer's laws of embryology. With these laws, von Baer described the development

In 1828, while working at the University of Konigsberg in Konigsberg, Germany Karl Ernst von Baer proposed four laws of animal development, which came to be called von Baer's laws of embryology. With these laws, von Baer described the development (ontogeny) of animal embryos while also critiquing popular theories of animal development at the time. Von Baer's laws of embryology provided a framework to research the relationships and patterns between the development of different classes of organisms, and the patterns between this development and the diversification of species on Earth (phylogeny).

Date Created
2014-04-15

Neural Crest

172777-Thumbnail Image.png
Description

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle. The diversity of NCCs that the neural crest produces has led researchers to propose the neural crest as a fourth germ layer, or one of the primary cellular structures in early embryos from which all adult tissues and organs arise. Furthermore, evolutionary biologists study the neural crest because it is a novel shared evolutionary character (synapomorphy) of all vertebrates.

Date Created
2014-09-15

Neurocristopathies

172776-Thumbnail Image.png
Description

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or
proliferation of the NCCs. There are many neurocristopathies
that affect many different types of systems. Some neurocristopathies
result in albinism (piebaldism) and cleft palate in humans. Various
pigment, skin, thyroid, and hearing disorders, craniofacial and heart
abnormalities, malfunctions of the digestive tract, and tumors can be
classified as neurocristopathies. This classification ties a variety of
disorders to one embryonic origin.

Date Created
2014-09-19