Creation and Implementation of Supplementary Materials to Improve Student Learning in the Mechanics Project

132115-Thumbnail Image.png
Description
In order to aid student learning of difficult subject matter in the Mechanics Project (CEE 210, CEE 212, and CEE 213), supplementary materials were created. The aim of these supplementary materials was to bridge the gap between nuanced concepts and

In order to aid student learning of difficult subject matter in the Mechanics Project (CEE 210, CEE 212, and CEE 213), supplementary materials were created. The aim of these supplementary materials was to bridge the gap between nuanced concepts and address muddiest points around computing projects. The following problem areas were identified and addressed over the course of the thesis: boundary and continuity conditions, MATLAB programming, load resultant methods, report writing, and stress and strain. These areas of difficulty were identified by observing student success in the classroom setting and in office hours. The submitted material related to boundary and continuity conditions offers students with a reference to definitions of each condition, examples involving each condition, and an explanation as to the importance of segmenting a beam in reference to these conditions. The MATLAB coding and debugging material gives students do’s and don’ts, general tips, and informative flow charts to follow when debugging. These were created to improve students’ ability to code and to debug their programs. The load resultant method material provides an example illustrating the difference between the integral and resultant method. Additionally, this material provides common formulas utilized by the resultant method. The report writing document lists do’s and don’ts when writing a computing project. The document also illustrates the nuance behind each section of the report via examples and gives students practical suggestions to aid in their success in completing these reports. The final submitted material regarding stress and strain addresses the conceptual definitions, the uses of, and the special cases of stress and strain. The document also provides reference to current course materials that discuss stress and strain.
Date Created
2019-12