Chemical Cues Impact Zebrafish Response to Visual Cues

148112-Thumbnail Image.png
Description

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual cues. Zebrafish (Danio rerio) often use both chemical cues and visual cues to communicate with shoal mates, to assess predation risk, and to locate food. For example, zebrafish rely on both olfactory cues and visual cues for kin recognition, and they frequently use both chemical and visual cues to search for and to capture prey. In zebrafish, the terminal nerve (TN) constitutes the olfacto-visual centrifugal pathway and connects the olfactory bulb with the retina, thus allowing olfactory perception also to activate visual receptors. Past studies have found that the presence of an olfactory cue can modulate visual sensitivity in zebrafish through the terminal nerve pathway. Alternatively, given that zebrafish are highly social, the presence of social chemical cues may distract individuals from responding to other visual cues, such as food and predator visual cues. Foraging and predator chemical cues, including chemical food cues and alarm cues, may also distract individuals from responding to non-essential visual cues. Here, we test whether the response to a visual cue either increases or decreases when presented in concert with alanine, an amino acid that represents the olfactory cues of zebrafish prey. We found that the presence of chemical cues did not affect whether zebrafish responded to visual cues, but that the fish took longer to respond to visual cues when chemical cues were also present. These findings suggest that different aspects of behavior could be affected by the interaction between sensory modalities. We also found that this impact of delayed response was significant only when the visual cue<br/>was weak compared to the strength of the chemical cue, suggesting that the salience of interacting cues may also have an influence on determining the outcomes of the interactions. Overall, the interactive effects of chemicals on an animal’s response to visual cues may also have wide-ranging impacts on behavior including foraging, mating, and evading predators, and the interaction of cues may affect different aspects of the same behavior.

Date Created
2021-05
Agent

Adult Zebrafish (Danio rerio) Exposure to Bisphenol-A (BPA) Impairs Behavioral Lateralization

131819-Thumbnail Image.png
Description
Cerebral lateralization describes the asymmetries between the two halves of the brain which results in side-specialized processing of certain functions. This phenomenon provides a selective advantage by promoting enhanced cognitive abilities. However, due to the plastic nature of lateralization, an

Cerebral lateralization describes the asymmetries between the two halves of the brain which results in side-specialized processing of certain functions. This phenomenon provides a selective advantage by promoting enhanced cognitive abilities. However, due to the plastic nature of lateralization, an individual’s lateralization is highly subject to change by many external factors, such as pollution, throughout its life. Additionally, lateralized regions are dependent on different contexts, so lateralized elements do not all experience the same effects. A common pollutant found worldwide is bisphenol-A (BPA), a critical component of many plastics. BPA is a known endocrine disruptor that can agonize and antagonize the functions of sex steroids. Other studies have demonstrated the importance of sex steroids in regulating the development of cerebral lateralization; BPA may similarly affect lateralization. A popular research animal for studying toxicology is the zebrafish. Its advantages include a fully sequenced genome, many human orthologs, and more importantly, expresses lateralized behaviors that are indicative of the strength of its cerebral lateralization. This experiment analyzed the effects of BPA exposure on visual lateralization of zebrafish. Given the role that sex steroids play in moderating lateralization, it was hypothesized that exposing zebrafish to BPA would diminish the strength of lateralization in the brain which would translate into reduced behavioral lateralization. To test this, one group was exposed to 0.01 mg/L BPA for one week and compared against a control group in their eye preference when approaching a visual cue. Two settings, a foraging context and a social context, were utilized to examine the scope of impairment in lateralization. The control group in both settings displayed similar strengths in behavioral lateralization with a left eye preference. However, the lateralized response faded completely with BPA treatment. This experiment demonstrates that BPA induces loss of lateralization and possesses similar impacts on mechanisms controlling investigatory behavior in these two contexts. Wild populations may encounter higher concentrations of BPA, and although there is greater variability in these exposures, this experiment proves that exposure even beyond critical periods of development can impair lateralization. Additional research will have to be conducted to identify the effects of BPA on other lateralized behaviors and sensory modalities to pinpoint the exact mechanisms through which BPA influences lateralization.
Date Created
2020-05
Agent