Applying academic analytics: developing a process for utilizing Bayesian networks to predict stopping out among community college students

153357-Thumbnail Image.png
Description
Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational

Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational researchers reared in a frequentist perspective into the realms of Bayesian analysis and educational data mining. The current study aimed to address this by providing a model-building process for developing a Bayesian network (BN) that leveraged educational data mining, Bayesian analysis, and traditional iterative model-building techniques in order to predict whether community college students will stop out at the completion of each of their first six terms. The study utilized exploratory and confirmatory techniques to reduce an initial pool of more than 50 potential predictor variables to a parsimonious final BN with only four predictor variables. The average in-sample classification accuracy rate for the model was 80% (Cohen's κ = 53%). The model was shown to be generalizable across samples with an average out-of-sample classification accuracy rate of 78% (Cohen's κ = 49%). The classification rates for the BN were also found to be superior to the classification rates produced by an analog frequentist discrete-time survival analysis model.
Date Created
2015
Agent

The Impact of Varying the Number of Measurement Invariance Constraints on the Assessment of Between-Group Differences of Latent Means

153000-Thumbnail Image.png
Description
Structural equation modeling is potentially useful for assessing mean differences between groups on latent variables (i.e., factors). However, to evaluate these differences accurately, the parameters of the indicators of these latent variables must be specified correctly. The focus of the

Structural equation modeling is potentially useful for assessing mean differences between groups on latent variables (i.e., factors). However, to evaluate these differences accurately, the parameters of the indicators of these latent variables must be specified correctly. The focus of the current research is on the specification of between-group equality constraints on the loadings and intercepts of indicators. These equality constraints are referred to as invariance constraints. Previous simulation studies in this area focused on fitting a particular model to data that were generated to have various levels and patterns of non-invariance. Results from these studies were interpreted from a viewpoint of assumption violation rather than model misspecification. In contrast, the current study investigated analysis models with varying number of invariance constraints given data that were generated based on a model with indicators that were invariant, partially invariant, or non-invariant. More broadly, the current simulation study was conducted to examine the effect of correctly or incorrectly imposing invariance constraints as well as correctly or incorrectly not imposing invariance constraints on the assessment of factor mean differences. The results indicated that different types of analysis models yield different results in terms of Type I error rates, power, bias in estimation of factor mean difference, and model fit. Benefits and risks are associated with imposing or reducing invariance constraints on models. In addition, model fit or lack of fit can lead to wrong decisions concerning invariance constraints.
Date Created
2014
Agent

Obtaining accurate estimates of the mediated effect with and without prior information

152985-Thumbnail Image.png
Description
Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When prior information about a relationship is available, the estimates obtained could differ drastically depending on the choice of Bayesian or frequentist method. Study 1 in this project compared the performance of five methods for obtaining interval estimates of the mediated effect in terms of coverage, Type I error rate, empirical power, interval imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian methods with informative prior distributions performed almost identically to Bayesian methods with diffuse prior distributions, and had more power than normal theory confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, interval width, and imbalance comparable to normal theory, percentile bootstrap, and the bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with true parameter values as prior information outperforms the other methods. The findings indicate that with true values of parameters as the prior information, Bayesian credibility intervals with informative prior distributions have more power, less imbalance, and narrower intervals than Bayesian credibility intervals with diffuse prior distributions, normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 3 examined how much power increases when increasing the precision of the prior distribution by a factor of ten for either the action or the conceptual path in mediation analysis. Power generally increases with increases in precision but there are many sample size and parameter value combinations where precision increases by a factor of 10 do not lead to substantial increases in power.
Date Created
2014
Agent

Analytic Selection of a Valid Subtest for DIF Analysis when DIF has Multiple Potential Causes among Multiple Groups

152928-Thumbnail Image.png
Description
The study examined how ATFIND, Mantel-Haenszel, SIBTEST, and Crossing SIBTEST function when items in the dataset are modelled to differentially advantage a lower ability focal group over a higher ability reference group. The primary purpose of the study was to

The study examined how ATFIND, Mantel-Haenszel, SIBTEST, and Crossing SIBTEST function when items in the dataset are modelled to differentially advantage a lower ability focal group over a higher ability reference group. The primary purpose of the study was to examine ATFIND's usefulness as a valid subtest selection tool, but it also explored the influence of DIF items, item difficulty, and presence of multiple examinee populations with different ability distributions on both its selection of the assessment test (AT) and partitioning test (PT) lists and on all three differential item functioning (DIF) analysis procedures. The results of SIBTEST were also combined with those of Crossing SIBTEST, as might be done in practice.

ATFIND was found to be a less-than-effective matching subtest selection tool with DIF items that are modelled unidimensionally. If an item was modelled with uniform DIF or if it had a referent difficulty parameter in the Medium range, it was found to be selected slightly more often for the AT List than the PT List. These trends were seen to increase as sample size increased. All three DIF analyses, and the combined SIBTEST and Crossing SIBTEST, generally were found to perform less well as DIF contaminated the matching subtest, as well as when DIF was modelled less severely or when the focal group ability was skewed. While the combined SIBTEST and Crossing SIBTEST was found to have the highest power among the DIF analyses, it also was found to have Type I error rates that were sometimes extremely high.
Date Created
2014
Agent

Posterior predictive model checking in Bayesian networks

152477-Thumbnail Image.png
Description
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research

This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by proportions of replications in which the PPP-values were extreme. An effect size measure for PPMC was introduced as a supplemental numerical summary to the PPP-value. Consistent with previous PPMC research, all investigated fit functions tended to perform conservatively, but Standardized Generalized Dimensionality Discrepancy Measure (SGDDM), Yen's Q3, and Hierarchy Consistency Index (HCI) only mildly so. Adequate power to detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, Item Consistency Index (ICI), and to a lesser extent Deviance, while proportion correct (PC), a chi-square-type item-fit measure, Ranked Probability Score (RPS), and Good's Logarithmic Scale (GLS) were powerless across all investigated factors. Bivariate SGDDM and Q3 were found to provide powerful and detailed feedback for all investigated types of misfit.
Date Created
2014
Agent

Impact of violations of longitudinal measurement invariance in latent growth models and autoregressive quasi-simplex models

152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
Date Created
2013
Agent

A comparison of DIMTEST and generalized dimensionality discrepancy approaches to assessing dimensionality in item response theory

151992-Thumbnail Image.png
Description
Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under

Dimensionality assessment is an important component of evaluating item response data. Existing approaches to evaluating common assumptions of unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale assessment conditions (e.g., large sample sizes and item pools; see e.g., Froelich & Habing, 2007). It remains to be seen how such procedures perform in the context of small-scale assessments characterized by relatively small sample sizes and/or short tests. The fact that some procedures come with minimum allowable values for characteristics of the data, such as the number of items, may even render them unusable for some small-scale assessments. Other measures designed to assess dimensionality do not come with such limitations and, as such, may perform better under conditions that do not lend themselves to evaluation via statistics that rely on asymptotic theory. The current work aimed to evaluate the performance of one such metric, the standardized generalized dimensionality discrepancy measure (SGDDM; Levy & Svetina, 2011; Levy, Xu, Yel, & Svetina, 2012), under both large- and small-scale testing conditions. A Monte Carlo study was conducted to compare the performance of DIMTEST and the SGDDM statistic in terms of evaluating assumptions of unidimensionality in item response data under a variety of conditions, with an emphasis on the examination of these procedures in small-scale assessments. Similar to previous research, increases in either test length or sample size resulted in increased power. The DIMTEST procedure appeared to be a conservative test of the null hypothesis of unidimensionality. The SGDDM statistic exhibited rejection rates near the nominal rate of .05 under unidimensional conditions, though the reliability of these results may have been less than optimal due to high sampling variability resulting from a relatively limited number of replications. Power values were at or near 1.0 for many of the multidimensional conditions. It was only when the sample size was reduced to N = 100 that the two approaches diverged in performance. Results suggested that both procedures may be appropriate for sample sizes as low as N = 250 and tests as short as J = 12 (SGDDM) or J = 19 (DIMTEST). When used as a diagnostic tool, SGDDM may be appropriate with as few as N = 100 cases combined with J = 12 items. The study was somewhat limited in that it did not include any complex factorial designs, nor were the strength of item discrimination parameters or correlation between factors manipulated. It is recommended that further research be conducted with the inclusion of these factors, as well as an increase in the number of replications when using the SGDDM procedure.
Date Created
2013
Agent

The accuracy of accuracy estimates for single form dichotomous classification exams

151761-Thumbnail Image.png
Description
The use of exams for classification purposes has become prevalent across many fields including professional assessment for employment screening and standards based testing in educational settings. Classification exams assign individuals to performance groups based on the comparison of their observed

The use of exams for classification purposes has become prevalent across many fields including professional assessment for employment screening and standards based testing in educational settings. Classification exams assign individuals to performance groups based on the comparison of their observed test scores to a pre-selected criterion (e.g. masters vs. nonmasters in dichotomous classification scenarios). The successful use of exams for classification purposes assumes at least minimal levels of accuracy of these classifications. Classification accuracy is an index that reflects the rate of correct classification of individuals into the same category which contains their true ability score. Traditional methods estimate classification accuracy via methods which assume that true scores follow a four-parameter beta-binomial distribution. Recent research suggests that Item Response Theory may be a preferable alternative framework for estimating examinees' true scores and may return more accurate classifications based on these scores. Researchers hypothesized that test length, the location of the cut score, the distribution of items, and the distribution of examinee ability would impact the recovery of accurate estimates of classification accuracy. The current simulation study manipulated these factors to assess their potential influence on classification accuracy. Observed classification as masters vs. nonmasters, true classification accuracy, estimated classification accuracy, BIAS, and RMSE were analyzed. In addition, Analysis of Variance tests were conducted to determine whether an interrelationship existed between levels of the four manipulated factors. Results showed small values of estimated classification accuracy and increased BIAS in accuracy estimates with few items, mismatched distributions of item difficulty and examinee ability, and extreme cut scores. A significant four-way interaction between manipulated variables was observed. In additional to interpretations of these findings and explanation of potential causes for the recovered values, recommendations that inform practice and avenues of future research are provided.
Date Created
2013
Agent

Do more comprehensive psychoeducational evaluations promote TBI educational diagnosis?

151505-Thumbnail Image.png
Description
Students with traumatic brain injury (TBI) sometimes experience impairments that can adversely affect educational performance. Consequently, school psychologists may be needed to help determine if a TBI diagnosis is warranted (i.e., in compliance with the Individuals with Disabilities Education Improvement

Students with traumatic brain injury (TBI) sometimes experience impairments that can adversely affect educational performance. Consequently, school psychologists may be needed to help determine if a TBI diagnosis is warranted (i.e., in compliance with the Individuals with Disabilities Education Improvement Act, IDEIA) and to suggest accommodations to assist those students. This analogue study investigated whether school psychologists provided with more comprehensive psychoeducational evaluations of a student with TBI succeeded in detecting TBI, in making TBI-related accommodations, and were more confident in their decisions. To test these hypotheses, 76 school psychologists were randomly assigned to one of three groups that received increasingly comprehensive levels of psychoeducational evaluation embedded in a cumulative folder of a hypothetical student whose history included a recent head injury and TBI-compatible school problems. As expected, school psychologists who received a more comprehensive psychoeducational evaluation were more likely to make a TBI educational diagnosis, but the effect size was not strong, and the predictive value came from the variance between the first and third groups. Likewise, school psychologists receiving more comprehensive evaluation data produced more accommodations related to student needs and felt more confidence in those accommodations, but significant differences were not found at all levels of evaluation. Contrary to expectations, however, providing more comprehensive information failed to engender more confidence in decisions about TBI educational diagnoses. Concluding that a TBI is present may itself facilitate accommodations; school psychologists who judged that the student warranted a TBI educational diagnosis produce more TBI-related accommodations. Impact of findings suggest the importance of training school psychologists in the interpretation of neuropsychology test results to aid in educational diagnosis and to increase confidence in their use.
Date Created
2012
Agent

Diagnostic utility of the Culture-Language Interpretive Matrix for the WISC-IV among referred students

151021-Thumbnail Image.png
Description
The Culture-Language Interpretive Matrix (C-LIM) is a new tool hypothesized to help practitioners accurately determine whether students who are administered an IQ test are culturally and linguistically different from the normative comparison group (i.e., different) or culturally and linguistically similar

The Culture-Language Interpretive Matrix (C-LIM) is a new tool hypothesized to help practitioners accurately determine whether students who are administered an IQ test are culturally and linguistically different from the normative comparison group (i.e., different) or culturally and linguistically similar to the normative comparison group and possibly have Specific Learning Disabilities (SLD) or other neurocognitive disabilities (i.e., disordered). Diagnostic utility statistics were used to test the ability of the Wechsler Intelligence Scales for Children-Fourth Edition (WISC-IV) C-LIM to accurately identify students from a referred sample of English language learners (Ells) (n = 86) for whom Spanish was the primary language spoken at home and a sample of students from the WISC-IV normative sample (n = 2,033) as either culturally and linguistically different from the WISC-IV normative sample or culturally and linguistically similar to the WISC-IV normative sample. WISC-IV scores from three paired comparison groups were analyzed using the Receiver Operating Characteristic (ROC) curve: (a) Ells with SLD and the WISC-IV normative sample, (b) Ells without SLD and the WISC-IV normative sample, and (c) Ells with SLD and Ells without SLD. Results of the ROC yielded Area Under the Curve (AUC) values that ranged between 0.51 and 0.53 for the comparison between Ells with SLD and the WISC-IV normative sample, AUC values that ranged between 0.48 and 0.53 for the comparison between Ells without SLD and the WISC-IV normative sample, and AUC values that ranged between 0.49 and 0.55 for the comparison between Ells with SLD and Ells without SLD. These values indicate that the C-LIM has low diagnostic accuracy in terms of differentiating between a sample of Ells and the WISC-IV normative sample. Current available evidence does not support use of the C-LIM in applied practice at this time.
Date Created
2012
Agent