Do Pupillometry and the P3 Event-Related Potential Reflect Locus Coeruleus-Norepinephrine System Activity in Humans?

131606-Thumbnail Image.png
Description
The locus coeruleus-norepinephrine system (LC-NE) has been argued to play a vital role in task engagement and attention control by the adaptive gain theory (Aston-Jones & Cohen, 2005). One of the central claims of this theory is that tonic LC

The locus coeruleus-norepinephrine system (LC-NE) has been argued to play a vital role in task engagement and attention control by the adaptive gain theory (Aston-Jones & Cohen, 2005). One of the central claims of this theory is that tonic LC activity exhibits a quadratic relationship with task performance. Pupil dynamics have been correlated to LC-NE activity via primate intracranial recordings in ways that provide evidence for the adaptive gain theory. Due to the small size and location of the LC, less is known about LC functioning in humans, leading to a desire to find valid, noninvasive psychophysiological proxies to study this structure. In this paper we performed a replication of Murphy, Robertson, Balsters, & O’Connell (2011) to gather evidence on whether pupil fluctuations and the P3 event-related potential are viable markers for measuring tonic and phasic LC-NE activity in humans. A sample of 33 subjects from the Arizona State University human subjects pool provided usable electroencephalogram and pupillometry data collected during an auditory oddball task. Our analyses largely correspond with those found in Murphy et al. (2011) showing some evidence that pupillometry and P3 can be utilized when studying the LC. Moving forward we will reproduce the full set of analyses from Murphy et al. (2011) with our dataset.
Date Created
2020-05
Agent