Magnesiothermic Conversion of Sintered-Closely Packed Diatom (Coscinodiscus wailesii) Monolayer on Silicon Wafer and its Optical Properties.

156467-Thumbnail Image.png
Description
The hierarchical silica structure of the Coscinodiscus wailesii diatom was studied due to its intriguing optical properties. To bring the diatom into light harvesting applications, three crucial factors were investigated, including closely-packed diatom monolayer formation, bonding of the diatoms on

The hierarchical silica structure of the Coscinodiscus wailesii diatom was studied due to its intriguing optical properties. To bring the diatom into light harvesting applications, three crucial factors were investigated, including closely-packed diatom monolayer formation, bonding of the diatoms on a substrate, and conversion of silica diatom shells into silicon.

The closely-packed monolayer formation of diatom valves on silicon substrates was accomplished using their hydrodynamic properties and the surface tension of water. Valves dispersed on a hydrophobic surface were able to float-up with a preferential orientation (convex side facing the water surface) when water was added. The floating diatom monolayer was subsequently transferred to a silicon substrate. A closely-packed diatom monolayer on the silicon substrate was obtained after the water evaporated at room temperature.

The diatom monolayer was then directly bonded onto the substrate via a sintering process at high temperature in air. The percentage of bonded valves increased as the temperature increased. The valves started to sinter into the substrate at 1100°C. The sintering process caused shrinkage of the nanopores at temperatures above 1100°C. The more delicate structure was more sensitive to the elevated temperature. The cribellum, the most intricate nanostructure of the diatom (~50 nm), disappeared at 1125°C. The cribrum, consisting of approximated 100-300 nm diameter pores, disappeared at 1150°C. The areola, the micro-chamber-liked structure, can survive up to 1150°C. At 1200°C, the complete nanostructure was destroyed. In addition, cross-section images revealed that the valves fused into the thermally-grown oxide layer that was generated on the substrate at high temperatures.

The silica-sintered diatom close-packed monolayer, processed at 1125°C, was magnesiothermically converted into porous silicon using magnesium silicide. X-ray diffraction, infrared absorption, energy dispersive X-say spectra and secondary electron images confirmed the formation of a Si layer with preserved diatom nano-microstructure. The conversion process and subsequent application of a PEDOT:PSS coating both decreased the light reflection from the sample. The photocurrent and reflectance spectra revealed that the Si-diatom dominantly enhanced light absorption between 414 to 586 nm and 730 to 800 nm. Though some of the structural features disappeared during the sintering process, the diatom is still able to improve light absorption. Therefore, the sintering process can be used for diatom direct bonding in light harvesting applications.
Date Created
2018
Agent

Inorganic and Organic Photovoltaic Materials for Powering Electrochromic Systems

156416-Thumbnail Image.png
Description
ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely

ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration with electrochromic stacks.

Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and p-i-n heterojunction devices, and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated surface electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of recombination at the metal/semiconductor interface and blocking of majority carriers. For interdigitated devices under monochromatic UV-C illumination, the open-circuit voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier tunneling, was 0.68 mA/cm2.

A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole transport layers, i.e., LiF with Al contact and conducting
on-conducting (nc) PEDOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side), respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET stack exhibited the highest performance: power conversion efficiency (PCE) ≈ 3%, Voc = 0.9V, and Jsc ≈ 10-15 mA/cm2. These stacks exhibited high visible range transparency, and provided the requisite power for a switchable electrochromic stack having an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS substrates) exhibited optical switching under external bias from the PV stack (or an electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ = 525 nm. The devices were paired using an Internet of Things controller that enabled wireless switching.
Date Created
2018
Agent

Diagnostic and Therapeutic MEMS (Micro-Electro-Mechanical Systems) Devices for the Identification and Treatment of Human Disease

156289-Thumbnail Image.png
Description
Early detection and treatment of disease is paramount for improving human health and wellness. Micro-scale devices promote new opportunities for the rapid, cost-effective, and accurate identification of altered biological states indicative of disease early-onset; these devices function at a scale

Early detection and treatment of disease is paramount for improving human health and wellness. Micro-scale devices promote new opportunities for the rapid, cost-effective, and accurate identification of altered biological states indicative of disease early-onset; these devices function at a scale more sensitive to numerous biological processes. The application of Micro-Electro-Mechanical Systems (MEMS) in biomedical settings has recently emerged and flourished over course of the last two decades, requiring a deep understanding of material biocompatibility, biosensing sensitively/selectively, biological constraints for artificial tissue/organ replacement, and the regulations in place to ensure device safety. Capitalizing on the inherent physical differences between cancerous and healthy cells, our ultra-thin silicone membrane enables earlier identification of bladder cancer—with a 70% recurrence rate. Building on this breakthrough, we have devised an array to multiplex this sample-analysis in real-time as well as expanding beyond bladder cancer. The introduction of new materials—with novel properties—to augment current and create innovative medical implants requires the careful analysis of material impact on cellular toxicity, mutagenicity, reactivity, and stability. Finally, the achievement of replacing defective biological systems with implanted artificial equivalents that must function within the same biological constraints, have consistent reliability, and ultimately show the promise of improving human health as demonstrated by our hydrogel check valve. The ongoing proliferation, expanding prevalence, and persistent improvement in MEMS devices through greater sensitivity, specificity, and integration with biological processes will undoubtedly bolster medical science with novel MEMS-based diagnostics and therapeutics.
Date Created
2018
Agent

Development of New Front Side Metallization Method of Aluminum Electroplating for Silicon Solar Cell

156134-Thumbnail Image.png
Description
In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal

In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4×10–6 -cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of ±0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13˚C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.
Date Created
2018
Agent

Development of novel sensor devices for total ionization dose detection

155922-Thumbnail Image.png
Description
Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two

Total dose sensing systems (or radiation detection systems) have many applications,

ranging from survey monitors used to supervise the generated radioactive waste at

nuclear power plants to personal dosimeters which measure the radiation dose

accumulated in individuals. This dissertation work will present two different types of

novel devices developed at Arizona State University for total dose sensing applications.

The first detector technology is a mechanically flexible metal-chalcogenide glass (ChG)

based system which is fabricated on low cost substrates and are intended as disposable

total dose sensors. Compared to existing commercial technologies, these thin film

radiation sensors are simpler in form and function, and cheaper to produce and operate.

The sensors measure dose through resistance change and are suitable for applications

such as reactor dosimetry, radiation chemistry, and clinical dosimetry. They are ideal for

wearable devices due to the lightweight construction, inherent robustness to resist

breaking when mechanically stressed, and ability to attach to non-flat objects. Moreover,

their performance can be easily controlled by tuning design variables and changing

incorporated materials. The second detector technology is a wireless dosimeter intended

for remote total dose sensing. They are based on a capacitively loaded folded patch

antenna resonating in the range of 3 GHz to 8 GHz for which the load capacitance varies

as a function of total dose. The dosimeter does not need power to operate thus enabling

its use and implementation in the field without requiring a battery for its read-out. As a

result, the dosimeter is suitable for applications such as unattended detection systems

destined for covert monitoring of merchandise crossing borders, where nuclear material

tracking is a concern. The sensitive element can be any device exhibiting a known

variation of capacitance with total ionizing dose. The sensitivity of the dosimeter is

related to the capacitance variation of the radiation sensitive device as well as the high

frequency system used for reading. Both technologies come with the advantage that they

are easy to manufacture with reasonably low cost and sensing can be readily read-out.
Date Created
2017
Agent

All About Solar

Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution.

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions.
Date Created
2017-05
Agent

915 MHz Telemetry and Real-Time Flight Control Wireless Link

134093-Thumbnail Image.png
Description
Remotely controlled flying vehicles such as UAVs are becoming more common due to decreases in material costs and increases in performance of components. Radio control link options, however, have not improved at the same rate as airframes, motors, flight controllers,

Remotely controlled flying vehicles such as UAVs are becoming more common due to decreases in material costs and increases in performance of components. Radio control link options, however, have not improved at the same rate as airframes, motors, flight controllers, etc [HobbyKing]. Most UAVs require a radio link, often at 2.4 GHz, for flight control, and a second link at 915 MHz for telemetry data transmission [HobbyKing]. Occasionally there is also a video link at either 2.4 GHz or 5.8 GHz. Having multiple transmitters increase power usage from the limited battery reserve that the UAV carries. It also increases weight and space used on the airframe. In addition, the 2.4 GHz band is often congested [ISM Congestion] and does not provide as great a range for a given transmission power as lower frequencies do [Wu]. Attempting to reduce space and weight, power consumption, and simplify design, while increasing control and telemetry range requires the design, testing, and implementation of a radio link that handles both real-time flight control and telemetry with the same transceiver. Only the flight control and telemetry will be addressed in this project. Merging and/or improving the video link will not be tackled at this time in order to simplify project goals to fit inside time constraints. The new radio link system will be verified for functionality then power and range test data will be gathered to determine how effective it is.
Date Created
2017-12
Agent

Cost-Effective Proximity Object Sensing

135455-Thumbnail Image.png
Description
The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of

The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that are versatile, durable, low cost, and simple. Devices utilizing various acoustic and electromagnetic wave frequencies like ultrasonic rangefinders, radars, Lidar rangefinders, webcams, and infrared rangefinders and the concepts of Sensor Fusion, Frequency Modulated Continuous Wave radar, and Phased Arrays were explored. The effects of various factors on the propagation of different wave signals was also investigated. The devices selected to be incorporated into designs were the HB100 DRO Radar Doppler Sensor (as an FMCW radar), HC-SR04 Ultrasonic Sensor, and Maxbotix Ultrasonic Rangefinder \u2014 EZ3. Three designs were ultimately developed and dubbed the "Rad-Son Fusion", the "Tri-Beam Scanner", and the "Dual-Receiver Ranger". The "Rad-Son Fusion" employs the Sensor Fusion of an FMCW radar and Ultrasonic sensor through a weighted average of the distance reading from the two sensors. The "Tri-Beam Scanner" utilizes a beam-forming Digital Phased Array of ultrasonic sensors to scan its surroundings. The "Dual-Receiver Ranger" uses the convolved result from to two modified HC-SR04 sensors to determine the time of flight and ultimately an object's distance. After conducting hardware experiments to determine the feasibility of each design, the "Dual-Receiver Ranger" was prototyped and tested to demonstrate the potential of the concept. The designs were later compared based on proposed requirements and possible improvements and challenges associated with the designs are discussed.
Date Created
2016-05
Agent

The Rest Egg Smartphone Connection: Accessibility, Utility, and Ease of Use via Mobile Application Support

135157-Thumbnail Image.png
Description
This document introduces the need for the Rest Egg system and defines an accessible method of smartphone integration. Excessive noise can prevent recovering patients and special needs persons from resting correctly. The Rest Egg was designed for these people- people

This document introduces the need for the Rest Egg system and defines an accessible method of smartphone integration. Excessive noise can prevent recovering patients and special needs persons from resting correctly. The Rest Egg was designed for these people- people who are in critical need of quality rest but are often unable to eliminate stressors themselves. This system ensures their environment is calm by alerting caretakers' smartphones if noise reaches abrasive levels. Smartphones were the preferred device due to the wide spread of such devices in today's market. After making open sourcing a goal, something ubiquitous and affordable \u2014 yet usable and dependable \u2014 was necessary for the alert system. These requirements lead to the election an online alert service: Pushover, a trademark and product of Superblock, LLC.
Date Created
2016-05
Agent

Virtual Office Assistant

134797-Thumbnail Image.png
Description
With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to inexpensive and not efficient. This leaves a low cost niche into the market of a virtual office assistant or manager to display messages and to help direct people in obtaining contact information. The development of a low cost solution revolves around the software needed to solve the various problems an accessible and user friendly Virtual Interface in which the owner of the Virtual Office Manager/Assistant can communicate to colleagues who are at standby outside of the owner's office and vice versa. This interface will be allowing the owner to describe the status pertaining to their absence or any other message sent to the interface. For example, the status of the owner's work commute can be described with a simple "Running Late" phrase or a message like "Busy come back in 10 minutes". In addition, any individual with an interest to these entries will have the opportunity to respond back because the device will provide contact information. When idle, the device will show supplemental information such as the owner's calendar and name. The scope of this will be the development and testing of solutions to achieve these goals.
Date Created
2016-12
Agent