Markov Chain Monte Carlo (MCMC) Modelling of Diagnostics for Pandemic Planning Using JAGS Package in R

131082-Thumbnail Image.png
Description
Markov Chain Monte-Carlo methods are a Bayesian approach to predictive statistics, which takes advantage of prior beliefs and conditions as well as the existing data to produce posterior distributions of relevant parameters. This approach, implementable through the JAGS packaging in

Markov Chain Monte-Carlo methods are a Bayesian approach to predictive statistics, which takes advantage of prior beliefs and conditions as well as the existing data to produce posterior distributions of relevant parameters. This approach, implementable through the JAGS packaging in R, is promising for its impact on the diagnostics space, which is a critical bottleneck for pandemic planning and rapid response. Specifically, these methods provide the means to optimize diagnostic testing, for example, by determining whether it is best to test individuals in a certain locale once or multiple times. This study compares the expected accuracy of single and double testing under two specific conditions, a general and Icelandic test case, in order to ascertain the validity of MCMC methods in this space and inform decisionmakers and future research in the space. Models based on this platform may eventually be tailored to the priors of specific locales. Additionally, the ability to test multiple regimes of real or simulated data while maintaining uncertainty widens the pool of researchers that can impact the space. In future studies, ensemble methods investigating the full range of parameters and their combinations can be studied.
Date Created
2020-05
Agent

Anticipatory and Invisible Interfaces to Address Impaired Proprioception in Neurological Disorders

158436-Thumbnail Image.png
Description
The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables:

The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has created the field of Anticipatory and Invisible Interfaces (AII)

In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main categories of consideration in the development of devices which are anticipatory and invisible:

• Idiosyncratic Design: How do can a design encapsulate the unique characteristics of the individual in the design of assistive aids?

• Adaptation to Intrapersonal Variations: As individuals progress through the various stages of a disability
eurological disorder, how can the technology adapt thresholds for feedback over time to address these shifts in ability?

• Context Aware Invisibility: How can the mechanisms of interaction be modified in order to reduce cognitive load?

The concepts proposed in this framework can be generalized to a broad range of domains; however, there are two primary applications for this work: rehabilitation and assistive aids. In preliminary studies, the framework is applied in the areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-compliance during rehabilitative exercise.
Date Created
2020
Agent

Characterizing Dysarthric Speech with Transfer Learning

158318-Thumbnail Image.png
Description
Speech is known to serve as an early indicator of neurological decline, particularly in motor diseases. There is significant interest in developing automated, objective signal analytics that detect clinically-relevant changes and in evaluating these algorithms against the existing gold-standard: perceptual

Speech is known to serve as an early indicator of neurological decline, particularly in motor diseases. There is significant interest in developing automated, objective signal analytics that detect clinically-relevant changes and in evaluating these algorithms against the existing gold-standard: perceptual evaluation by trained speech and language pathologists. Hypernasality, the result of poor control of the velopharyngeal flap---the soft palate regulating airflow between the oral and nasal cavities---is one such speech symptom of interest, as precise velopharyngeal control is difficult to achieve under neuromuscular disorders. However, a host of co-modulating variables give hypernasal speech a complex and highly variable acoustic signature, making it difficult for skilled clinicians to assess and for automated systems to evaluate. Previous work in rating hypernasality from speech relies on either engineered features based on statistical signal processing or machine learning models trained end-to-end on clinical ratings of disordered speech examples. Engineered features often fail to capture the complex acoustic patterns associated with hypernasality, while end-to-end methods tend to overfit to the small datasets on which they are trained. In this thesis, I present a set of acoustic features, models, and strategies for characterizing hypernasality in dysarthric speech that split the difference between these two approaches, with the aim of capturing the complex perceptual character of hypernasality without overfitting to the small datasets available. The features are based on acoustic models trained on a large corpus of healthy speech, integrating expert knowledge to capture known perceptual characteristics of hypernasal speech. They are then used in relatively simple linear models to predict clinician hypernasality scores. These simple models are robust, generalizing across diseases and outperforming comprehensive set of baselines in accuracy and correlation. This novel approach represents a new state-of-the-art in objective hypernasality assessment.
Date Created
2020
Agent

Generalized Domain Adaptation for Visual Domains

158278-Thumbnail Image.png
Description
Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and learn robust models that can perform well across both the domains.

This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.

The models were tested across multiple computer vision datasets for domain adaptation.

The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.
Date Created
2020
Agent

Incremental Learning With Sample Generation From Pretrained Networks

158259-Thumbnail Image.png
Description
In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction

In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of catastrophic forgetting, where the model forgets previously learned knowledge as it overfits to the newly available data. Incremental learning algorithms enable deep neural networks to prevent catastrophic forgetting by retaining knowledge of previously observed data while also learning from newly available data.

This thesis presents three models for incremental learning; (i) Design of an algorithm for generative incremental learning using a pre-trained deep neural network classifier; (ii) Development of a hashing based clustering algorithm for efficient incremental learning; (iii) Design of a student-teacher coupled neural network to distill knowledge for incremental learning. The proposed algorithms were evaluated using popular vision datasets for classification tasks. The thesis concludes with a discussion about the feasibility of using these techniques to transfer information between networks and also for incremental learning applications.
Date Created
2020
Agent

"I'm Having Trouble Understanding You Right Now": A Multi-Dimensional Evaluation of the Intelligibility of Dysphonic Speech

158233-Thumbnail Image.png
Description
Individuals with voice disorders experience challenges communicating daily. These challenges lead to a significant decrease in the quality of life for individuals with dysphonia. While voice amplification systems are often employed as a voice-assistive technology, individuals with voice disorders generally

Individuals with voice disorders experience challenges communicating daily. These challenges lead to a significant decrease in the quality of life for individuals with dysphonia. While voice amplification systems are often employed as a voice-assistive technology, individuals with voice disorders generally still experience difficulties being understood while using voice amplification systems. With the goal of developing systems that help improve the quality of life of individuals with dysphonia, this work outlines the landscape of voice-assistive technology, the inaccessibility of state-of-the-art voice-based technology and the need for the development of intelligibility improving voice-assistive technologies designed both with and for individuals with voice disorders. With the rise of voice-based technologies in society, in order for everyone to participate in the use of voice-based technologies individuals with voice disorders must be included in both the data that is used to train these systems and the design process. An important and necessary step towards the development of better voice assistive technology as well as more inclusive voice-based systems is the creation of a large, publicly available dataset of dysphonic speech. To this end, a web-based platform to crowdsource voice disorder speech was developed to create such a dataset. This dataset will be released so that it is freely and publicly available to stimulate research in the field of voice-assistive technologies. Future work includes building a robust intelligibility estimation model, as well as employing that model to measure, and therefore enhance, the intelligibility of a given utterance. The hope is that this model will lead to the development of voice-assistive technology using state-of-the-art machine learning models to help individuals with voice disorders be better understood.
Date Created
2020
Agent

Modern Sensory Substitution for Vision in Dynamic Environments

158224-Thumbnail Image.png
Description
Societal infrastructure is built with vision at the forefront of daily life. For those with

severe visual impairments, this creates countless barriers to the participation and

enjoyment of life’s opportunities. Technological progress has been both a blessing and

a curse in this regard.

Societal infrastructure is built with vision at the forefront of daily life. For those with

severe visual impairments, this creates countless barriers to the participation and

enjoyment of life’s opportunities. Technological progress has been both a blessing and

a curse in this regard. Digital text together with screen readers and refreshable Braille

displays have made whole libraries readily accessible and rideshare tech has made

independent mobility more attainable. Simultaneously, screen-based interactions and

experiences have only grown in pervasiveness and importance, precluding many of

those with visual impairments.

Sensory Substituion, the process of substituting an unavailable modality with

another one, has shown promise as an alternative to accomodation, but in recent

years meaningful strides in Sensory Substitution for vision have declined in frequency.

Given recent advances in Computer Vision, this stagnation is especially disconcerting.

Designing Sensory Substitution Devices (SSDs) for vision for use in interactive settings

that leverage modern Computer Vision techniques presents a variety of challenges

including perceptual bandwidth, human-computer-interaction, and person-centered

machine learning considerations. To surmount these barriers an approach called Per-

sonal Foveated Haptic Gaze (PFHG), is introduced. PFHG consists of two primary

components: a human visual system inspired interaction paradigm that is intuitive

and flexible enough to generalize to a variety of applications called Foveated Haptic

Gaze (FHG), and a person-centered learning component to address the expressivity

limitations of most SSDs. This component is called One-Shot Object Detection by

Data Augmentation (1SODDA), a one-shot object detection approach that allows a

user to specify the objects they are interested in locating visually and with minimal

effort realizing an object detection model that does so effectively.

The Personal Foveated Haptic Gaze framework was realized in a virtual and real-

world application: playing a 3D, interactive, first person video game (DOOM) and

finding user-specified real-world objects. User study results found Foveated Haptic

Gaze to be an effective and intuitive interface for interacting with dynamic visual

world using solely haptics. Additionally, 1SODDA achieves competitive performance

among few-shot object detection methods and high-framerate many-shot object de-

tectors. The combination of which paves the way for modern Sensory Substitution

Devices for vision.
Date Created
2020
Agent

Accessible Retail Shopping For The Visually Impaired Using Deep Learning

158127-Thumbnail Image.png
Description
Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making

Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making the world around them more accessible. A lot of research in convolutional neural networks has led to human-level performance in different vision tasks including image classification, object detection, instance segmentation, semantic segmentation, panoptic segmentation and scene text recognition. All the before mentioned tasks, individually or in combination, have been used to create assistive technologies to improve accessibility for the blind.

This dissertation outlines various applications to improve accessibility and independence for visually impaired people during shopping by helping them identify products in retail stores. The dissertation includes the following contributions; (i) A dataset containing images of breakfast-cereal products and a classifier using a deep neural (ResNet) network; (ii) A dataset for training a text detection and scene-text recognition model; (iii) A model for text detection and scene-text recognition to identify product images using a user-controlled camera; (iv) A dataset of twenty thousand products with product information and related images that can be used to train and test a system designed to identify products.
Date Created
2020
Agent

Language Image Transformer

158120-Thumbnail Image.png
Description
Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of

Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in many cases, extensively use deep-learning based attention mechanisms for learning powerful representations. This work discusses the role of attention in associating vision and language for generating shared representation. Language Image Transformer (LIT) is proposed for learning multi-modal representations of the environment. It uses a training objective based on Contrastive Predictive Coding (CPC) to maximize the Mutual Information (MI) between the visual and linguistic representations. It learns the relationship between the modalities using the proposed cross-modal attention layers. It is trained and evaluated using captioning datasets, MS COCO, and Conceptual Captions. The results and the analysis offers a perspective on the use of Mutual Information Maximisation (MIM) for generating generalizable representations across multiple modalities.
Date Created
2020
Agent

Zero Shot Learning for Visual Object Recognition with Generative Models

158117-Thumbnail Image.png
Description
Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by

Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories.

Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area.
Date Created
2020
Agent