Website Example NFA

161219-Thumbnail Image.jpg
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

Date Created
2021-12
Agent

Website Example DFA

161218-Thumbnail Image.jpg
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

Date Created
2021-12
Agent

Smith Thesis Project

161217-Thumbnail Image.png
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

Date Created
2021-12
Agent

A Web Applet for Finite-State Automata Visualization

Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

Date Created
2021-12
Agent

Pool Level Monitor and Autofill System: A Smart Home Device

148340-Thumbnail Image.png
Description

As smart home devices become more common in households across the globe, it is<br/>surprising that companies who specialize in IoT devices have not exploited the world of swimming<br/>pools. As a pool owner and avid IoT user, it has become increasingly

As smart home devices become more common in households across the globe, it is<br/>surprising that companies who specialize in IoT devices have not exploited the world of swimming<br/>pools. As a pool owner and avid IoT user, it has become increasingly obvious to me that such<br/>devices are necessary. Thus, I have developed an embedded system – connected to a web-based<br/>reporting system – that accurately reports common chemical levels of a swimming pool. In<br/>addition, this system includes an autofill function with information about the amount of water<br/>dispensed. This system gives pool owners access to an all-in-one device that can be used on any<br/>pool, new or old. Future implementations include a personalized application to display the pool<br/>levels and user-defined suggestions when certain levels become too high or low.

Date Created
2021-05
Agent

Self Play Machine Learning and Pokemon

130912-Thumbnail Image.png
Description
Video games often feature agents that the human player interacts with to overcome.
Designing these agents to cover every case of human interaction is difficult, and usually
imperfect, as human players are capable of learning to overcome these agents in unintended
ways. Artificial

Video games often feature agents that the human player interacts with to overcome.
Designing these agents to cover every case of human interaction is difficult, and usually
imperfect, as human players are capable of learning to overcome these agents in unintended
ways. Artificial intelligence is a growing field that seeks to solve problems by simulating
learning in specific environments. The aim of this paper is to explore the applications that the
self play learning branch of artificial intelligence may pose on game development in the future,
and to attempt to implement a working version of a self play agent learning to play a Pokemon
battle. Originally designed Pokemon battle behavior is often suboptimal, getting stuck making
ineffective or incorrect choices, so training a self play model to learn the strategy and structure of
Pokemon battles from a clean slate would result in an organic agent that would outperform the
original behavior of the computer controlled agents. Though unsuccessful in my implementation,
this paper serves as a record of the exploration of this field, and a log of what worked and what
did not, in order to benefit any future person interested in the same topics.
Date Created
2020-12
Agent

Prediction of Binding Affinity of T cell Receptor and Antigens using Deep Neural Networks

130975-Thumbnail Image.png
Description
Immunotherapy is an effective treatment for cancer which enables the patient's immune system to recognize tumor cells as pathogens. In order to design an individualized treatment, the t cell receptors (TCR) which bind to a tumor's unique antigens need to

Immunotherapy is an effective treatment for cancer which enables the patient's immune system to recognize tumor cells as pathogens. In order to design an individualized treatment, the t cell receptors (TCR) which bind to a tumor's unique antigens need to be determined. We created a convolutional neural network to predict the binding affinity between a given TCR and antigen to enable this.
Date Created
2020-12
Agent

Machine Learning: A Sentiment Analysis of Customer Reviews

131260-Thumbnail Image.png
Description
Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data

Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine learning applications expand to numerous fields; however, I chose to focus on machine learning with a business perspective for this thesis, specifically e-commerce.

The e-commerce market utilizes information to target customers and drive business. More and more online services have become available, allowing consumers to make purchases and interact with an online system. For example, Amazon is one of the largest Internet-based retail companies. As people shop through this website, Amazon gathers huge amounts of data on its customers from personal information to shopping history to viewing history. After purchasing a product, the customer may leave reviews and give a rating based on their experience. Performing analytics on all of this data can provide insights into making more informed business and marketing decisions that can lead to business growth and also improve the customer experience.
For this thesis, I have trained binary classification models on a publicly available product review dataset from Amazon to predict whether a review has a positive or negative sentiment. The sentiment analysis process includes analyzing and encoding the human language, then extracting the sentiment from the resulting values. In the business world, sentiment analysis provides value by revealing insights into customer opinions and their behaviors. In this thesis, I will explain how to perform a sentiment analysis and analyze several different machine learning models. The algorithms for which I compared the results are KNN, Logistic Regression, Decision Trees, Random Forest, Naïve Bayes, Linear Support Vector Machines, and Support Vector Machines with an RBF kernel.
Date Created
2020-05
Agent

Feature Extraction on Sentiment Attitude Values to Better Predict the Stock Market Using Twitter Sentiment

131363-Thumbnail Image.png
Description
Behavioral economics suggests that emotions can affect an individual’s decision making. Recent research on this idea’s application on large societies hints that there may exist some correlation or maybe even some causation relationship between public sentiment—at least what can be

Behavioral economics suggests that emotions can affect an individual’s decision making. Recent research on this idea’s application on large societies hints that there may exist some correlation or maybe even some causation relationship between public sentiment—at least what can be pulled from Twitter—and the movement of the stock market. One major result of consistent research on whether or not public sentiment can predict the movement of the stock market is that public sentiment, as a feature, is becoming more and more valid as a variable for stock-market-based machine learning models. While raw values typically serve as invaluable points of data, when training a model, many choose to “engineer” new features for their models—deriving rates of change or range values to improve model accuracy.
Since it doesn’t hurt to attempt to utilize feature extracted values to improve a model (if things don’t work out, one can always use their original features), the question may arise: how could the results of feature extraction on values such as sentiment affect a model’s ability to predict the movement of the stock market? This paper attempts to shine some light on to what the answer could be by deriving TextBlob sentiment values from Twitter data, and using Granger Causality Tests and logistic and linear regression to test if there exist a correlation or causation between the stock market and features extracted from public sentiment.
Date Created
2020-05
Agent

Group Event Planning App

131390-Thumbnail Image.png
Description
For our creative project, we initially wanted to work on a web application that would allow people with busy schedules to easily create and share events while also discovering other events that may interest them. With that in mind, we

For our creative project, we initially wanted to work on a web application that would allow people with busy schedules to easily create and share events while also discovering other events that may interest them. With that in mind, we created the Group Event Planner App, a full stack project that lays down a foundation for all of our goals while focusing primarily on the proposed recommendation algorithms that enable its users to discover events that are likely to pique their interest. The development of our recommendation algorithms took inspiration from existing implementations, such as those at Amazon, YouTube, and Netflix, and resulted in a creative amalgamation.
Date Created
2020-05
Agent