Stellar abundances in the solar neighborhood

150742-Thumbnail Image.png
Description
The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique,

The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas later collapses into new stars, which are able to form heavier elements due to the presence of the new elements. When we observe the abundances in a stellar regions, we are able to glean the astrophysical phenomena that occurred prior to its formation. I compile spectroscopic abundance data from 49 literature sources for 46 elements across 2836 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. I analyze the variability of the spread in abundance measurements reported for the same star by different surveys, the corresponding stellar atmosphere parameters adopted by various abundance determination methods, and the effect of normalizing all abundances to the same solar scale. The resulting abundance ratios [X/Fe] as a function of [Fe/H] are consistent with stellar nucleosynthetic processes and known Galactic thin-disk trends. I analyze the element abundances for 204 known exoplanet host-stars. In general, I find that exoplanet host-stars are not enriched more than the surrounding population of stars, with the exception of iron. I examine the stellar abundances with respect to both stellar and planetary physical properties, such as orbital period, eccentricity, planetary mass, stellar mass, and stellar color. My data confirms that exoplanet hosts are enriched in [Fe/H] but not in the refractory elements, per the self-enrichment theory for stellar composition. Lastly, I apply the Hypatia Catalog to the Catalog of Potentially Habitable Stellar Systems in order to investigate the abundances in the 1224 overlapping stars. By looking at stars similar to the Sun with respect to six bio-essential elements, I created maps that have located two ``habitability windows'' on the sky: (20.6hr, -4.8deg) and (22.6hr, -48.5deg). These windows may be of use in future targeted or beamed searches.
Date Created
2012
Agent

A new analytical method for measuring hydrogen isotopes using GC-IRMS: applications to hydrous minerals

149944-Thumbnail Image.png
Description
A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood

A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any accurate correction is difficult. This sample size effect been variously attributed to kinetic isotope fractionation within the mass spectrometer and peripheral instruments, ion source linearity issues, and an unstable H_3^+-factor or incorrect H_3^+-factor calculations. The cause of the sample size effect is here identified by examinations of individual chromatograms as well as bulk data from chromatographic peaks. It is here determined that it is primarily an artifact of the calculations employed by the manufacturer's computer program, used to both monitor the functions of the mass spectrometer and to collect data. Ancillary causes of the sample size effect include a combination of persistent background interferences and chromatographic separation of the isotopologues of molecular hydrogen. Previously published methods are evaluated in light of these findings. A new method of H_3^+-factor and D/H calculation is proposed which makes portions of the Isodat software as well as other published calculation methods unnecessary. Using this new method, D/H is measured in non-stoichiometric water in chert from the Cretaceous Edwards Group, Texas, as well as the Precambrian Kromberg Formation, South Africa, to assess hydrological conditions as well as to estimate the maximum average surface temperature during precipitation of the chert. Data from Cretaceous chert are consistent with previously published data and interpretations, based upon conventional analyses of large samples. Data from Precambrian chert are consistent with maximum average surface temperatures approaching 65°C during the Archean, instead of the much lower temperatures derived from erroneous methods of sample preparation and analysis. D/H is likewise measured in non-stoichiometric water in silicified basalt from the Precambrian Hooggenoeg Complex, South Africa. Data are shown to be consistent with D/H of the Archean ocean similar to present day values.
Date Created
2011
Agent