UV photolysis for relieved inhibition of sulfadiazine (SD) to biomass growth

130397-Thumbnail Image.png
Description
UV photolysis was used to relieve inhibition of biomass growth by sulfadiazine (SD), a broad-spectrum anti-microbial. To investigate the effects of SD on biomass growth, three substrates—glucose alone (G), glucose plus sulfadiazine (G+SD), and glucose plus photolyzed SD (G+PSD)—were used

UV photolysis was used to relieve inhibition of biomass growth by sulfadiazine (SD), a broad-spectrum anti-microbial. To investigate the effects of SD on biomass growth, three substrates—glucose alone (G), glucose plus sulfadiazine (G+SD), and glucose plus photolyzed SD (G+PSD)—were used to culture the bacteria acclimated to glucose. The biomass was strongly inhibited when SD was added into the glucose solution, but inhibition was relieved to a significant degree when the SD was treated with UV irradiation as a pretreatment. The biomass growth kinetics were described well by the Monod model when glucose was used as a substrate alone, but the kinetics followed a hybrid Aiba model for non-competitive inhibition when SD was added to the solution. When photolyzed SD was added to glucose solution to replace original SD, the growth still followed Aiba inhibition, but inhibition was significantly relieved: the maximum specific growth rate (μ[subscript max]) increased by 17 %, and the Aiba inhibition concentration increased by 60 %. Aniline, a major product of UV photolysis, supported the growth of the glucose-biodegrading bacteria. Thus, UV photolysis of SD significantly relieved inhibition by lowering the SD concentration and by generating a biodegradable product.
Date Created
2015-05-01
Agent

How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD)

130424-Thumbnail Image.png
Description
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated

Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
Date Created
2014-11-01
Agent