A Frame Theoretic Approach to the Nonuniform Fast Fourier Transform

129587-Thumbnail Image.png
Description

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various investigations have led to improvements in accuracy, efficiency, and robustness of the NFFT, not much attention has been paid to the fundamental analysis of the scheme, and in particular its convergence properties. This paper analyzes the convergence of the NFFT by casting it as a Fourier frame approximation. In so doing, we are able to design parameters for the method that satisfy conditions for numerical convergence. Our so-called frame theoretic convolutional gridding algorithm can also be applied to detect features (such as edges) from nonuniform Fourier samples of piecewise smooth functions.

Date Created
2013-11-30
Agent

Approximating the Inverse Frame Operator From Localized Frames

129679-Thumbnail Image.png
Description

This investigation seeks to establish the practicality of numerical frame approximations. Specifically, it develops a new method to approximate the inverse frame operator and analyzes its convergence properties. It is established that sampling with well-localized frames improves both the accuracy

This investigation seeks to establish the practicality of numerical frame approximations. Specifically, it develops a new method to approximate the inverse frame operator and analyzes its convergence properties. It is established that sampling with well-localized frames improves both the accuracy of the numerical frame approximation as well as the robustness and efficiency of the (finite) frame operator inversion. Moreover, in applications such as magnetic resonance imaging, where the given data often may not constitute a well-localized frame, a technique is devised to project the corresponding frame data onto a more suitable frame. As a result, the target function may be approximated as a finite expansion with its asymptotic convergence solely dependent on its smoothness. Numerical examples are provided.

Date Created
2013-08-13
Agent