Edge Detection from Non-Uniform Fourier Data via a Modified Method of Convolutional Gridding

137687-Thumbnail Image.png
Description
The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as those defining the locations of tumors. It can also be an invaluable tool in the amelioration of the negative effects of the Gibbs phenomenon on reconstructions of functions with discontinuities or images in multi-dimensions with internal edges. In this thesis we develop a novel method for recovering edges from non-uniform Fourier data by adapting the "convolutional gridding" method of function reconstruction. We analyze the behavior of the method in one dimension and then extend it to two dimensions on several examples.
Date Created
2013-05
Agent

Edge Detection From Non-Uniform Fourier Data Using the Convolutional Gridding Algorithm

129420-Thumbnail Image.png
Description

Detecting edges in images from a finite sampling of Fourier data is important in a variety of applications. For example, internal edge information can be used to identify tissue boundaries of the brain in a magnetic resonance imaging (MRI) scan,

Detecting edges in images from a finite sampling of Fourier data is important in a variety of applications. For example, internal edge information can be used to identify tissue boundaries of the brain in a magnetic resonance imaging (MRI) scan, which is an essential part of clinical diagnosis. Likewise, it can also be used to identify targets from synthetic aperture radar data. Edge information is also critical in determining regions of smoothness so that high resolution reconstruction algorithms, i.e. those that do not “smear over” the internal boundaries of an image, can be applied. In some applications, such as MRI, the sampling patterns may be designed to oversample the low frequency while more sparsely sampling the high frequency modes. This type of non-uniform sampling creates additional difficulties in processing the image. In particular, there is no fast reconstruction algorithm, since the FFT is not applicable. However, interpolating such highly non-uniform Fourier data to the uniform coefficients (so that the FFT can be employed) may introduce large errors in the high frequency modes, which is especially problematic for edge detection. Convolutional gridding, also referred to as the non-uniform FFT, is a forward method that uses a convolution process to obtain uniform Fourier data so that the FFT can be directly applied to recover the underlying image. Carefully chosen parameters ensure that the algorithm retains accuracy in the high frequency coefficients. Similarly, the convolutional gridding edge detection algorithm developed in this paper provides an efficient and robust way to calculate edges. We demonstrate our technique in one and two dimensional examples.

Date Created
2014-12-01
Agent