Lobate and Flow-Like Features on Asteroid Vesta

129397-Thumbnail Image.png
Description

We studied high-resolution images of asteroid Vesta's surface (~70 and 20–25 m/pixel) obtained during the High- and Low-Altitude Mapping Orbits (HAMO, LAMO) of NASA's Dawn mission to assess the formation mechanisms responsible for a variety of lobate, flow-like features observed

We studied high-resolution images of asteroid Vesta's surface (~70 and 20–25 m/pixel) obtained during the High- and Low-Altitude Mapping Orbits (HAMO, LAMO) of NASA's Dawn mission to assess the formation mechanisms responsible for a variety of lobate, flow-like features observed across the surface. We searched for evidence of volcanic flows, based on prior mathematical modeling and the well-known basaltic nature of Vesta's crust, but no unequivocal morphologic evidence of ancient volcanic activity has thus far been identified. Rather, we find that all lobate, flow-like features on Vesta appear to be related either to impact or erosional processes. Morphologically distinct lobate features occur in and around impact craters, and most of these are interpreted as impact ejecta flows, or possibly flows of impact melt. Estimates of melt production from numerical models and scaling laws suggests that large craters like Marcia (~60 km diameter) could have potentially produced impact melt volumes ranging from tens of millions of cubic meters to a few tens of cubic kilometers, which are relatively small volumes compared to similar-sized lunar craters, but which are consistent with putative impact melt features observed in Dawn images. There are also examples of lobate flows that trend downhill both inside and outside of crater rims and basin scarps, which are interpreted as the result of gravity-driven mass movements (slumps and landslides).

Date Created
2014-11-15
Agent

Imprint of the Rheasilvia Impact on Vesta - Geologic Mapping of Quadrangles Gegania and Lucaria

129400-Thumbnail Image.png
Description

We produced two 1:250,000 scale geologic maps of the adjacent quadrangles Av-6 Gegania and Av-7 Lucaria, located in the equatorial region of (4) Vesta (0–144°E, 22°S to 22°N). The mapping is based on clear and color filter images of the

We produced two 1:250,000 scale geologic maps of the adjacent quadrangles Av-6 Gegania and Av-7 Lucaria, located in the equatorial region of (4) Vesta (0–144°E, 22°S to 22°N). The mapping is based on clear and color filter images of the Framing Camera (FC) onboard the Dawn spacecraft, which has captured the entire illuminated surface of Vesta with high spatial resolution (up to ∼20 m/pixel), and on a digital terrain model derived from FC imagery. Besides the geologic mapping itself, a secondary purpose of this work is to investigate one of the most prominent morphological features on Vesta, namely the aggregation of several giant equatorial troughs termed the Divalia Fossae, most probably formed during the Rheasilvia impact near Vesta’s south pole. The up to 465 km long and 22 km wide troughs show height differences of up to 5 km between adjacent troughs and ridges. Another imprint of the Rheasilvia impact is the >350 km long and ∼250 km wide swath of ejecta crossing quadrangle Av-6 Gegania. This lobe shows a distinct appearance in FC color ratios and a high albedo in FC images, indicating a mineralogical similarity to material typically found within the Rheasilvia basin, in particular composed of diogenite-rich howardites. Almost the entire northern half of the mapping area shows the oldest surface, being dominated by upper crustal basaltic material. To the south, increasingly younger formations related to the Rheasilvia impact occur, either indicated by the troughs formed by Rheasilvia or by the Rheasilvia ejecta itself. Only medium sized impact craters with diameters less than 22 km occur within the two mapped quadrangles. Some of the craters exhibit ejecta blankets and/or distinctly dark or bright ejecta material in ejecta rays outside and exposures within the crater, and mass-wasting deposits down crater slopes, forming the youngest surfaces.

Date Created
2014-12-01
Agent

Vesta's North Pole Quadrangle Av-1 (Albana): Geologic Map and the Nature of the South Polar Basin Antipodes

129401-Thumbnail Image.png
Description

As part of systematic global mapping of Vesta using data returned by the Dawn spacecraft, we have produced a geologic map of the north pole quadrangle, Av-1 Albana. Extensive seasonal shadows were present in the north polar region at the

As part of systematic global mapping of Vesta using data returned by the Dawn spacecraft, we have produced a geologic map of the north pole quadrangle, Av-1 Albana. Extensive seasonal shadows were present in the north polar region at the time of the Dawn observations, limiting the ability to map morphological features and employ color or spectral data for determination of composition. The major recognizable units present include ancient cratered highlands and younger crater-related units (undivided ejecta, and mass-wasting material on crater floors). The antipode of Vesta’s large southern impact basins, Rheasilvia and Veneneia, lie within or near the Av-1 quadrangle. Therefore it is of particular interest to search for evidence of features of the kind that are found at basin antipodes on other planetary bodies. Albedo markings known as lunar swirls are correlated with basin antipodes and the presence of crustal magnetic anomalies on the Moon, but lighting conditions preclude recognition of such albedo features in images of the antipode of Vesta’s Rheasilvia basin. “Hilly and lineated terrain,” found at the antipodes of large basins on the Moon and Mercury, is not present at the Rheasilvia or Veneneia antipodes. We have identified small-scale linear depressions that may be related to increased fracturing in the Rheasilvia and Veneneia antipodal areas, consistent with impact-induced stresses (Buczkowski, D. et al. [2012b]. Analysis of the large scale troughs on Vesta and correlation to a model of giant impact into a differentiated asteroid. Geol. Soc. of America Annual Meeting. Abstract 152-4; Bowling, T.J. et al. [2013]. J. Geophys. Res. – Planets, 118. http://dx.doi.org/10.1002/jgre.20123). The general high elevation of much of the north polar region could, in part, be a result of uplift caused by the Rheasilvia basin-forming impact, as predicted by numerical modeling (Bowling, T.J. et al. [2013]. J. Geophys. Res. – Planets, 118. http://dx.doi.org/10.1002/jgre.20123). However, stratigraphic and crater size–frequency distribution analysis indicate that the elevated terrain predates the two southern basins and hence is likely a remnant of the ancient vestan crust. The lack of large-scale morphological features at the basin antipodes can be attributed to weakened antipodal constructive interference of seismic waves caused by an oblique impact or by Vesta’s non-spherical shape, or by attenuation of seismic waves because of the physical properties of Vesta’s interior. A first-order analysis of the Dawn global digital elevation model for Vesta indicates that areas of permanent shadow are unlikely to be present in the vicinity of the north pole.

Date Created
2014-12-01
Agent

Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta

129404-Thumbnail Image.png
Description

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images,

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA’s Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (∼45 km diameter) and Oppia (∼40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as ‘dark mantle’ material because it appears dark orange in the Framing Camera ‘Clementine-type’ color-ratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera ‘Clementine-type’ color-ratio image as ‘light mantle material’ supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced >5 crater radii away) in a microgravity environment.

Date Created
2014-12-01
Agent

Geologic Map of the Northern Hemisphere of Vesta Based on Dawn Framing Camera (FC) Images

129405-Thumbnail Image.png
Description

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3,

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We have compiled a morphologic map and performed crater size–frequency distribution (CSFD) measurements to date the geologic units. The hemisphere is characterized by a heavily cratered surface with a few highly subdued basins up to ∼200 km in diameter. The most widespread unit is a plateau (cratered highland unit), similar to, although of lower elevation than the equatorial Vestalia Terra plateau. Large-scale troughs and ridges have regionally affected the surface. Between ∼180°E and ∼270°E, these tectonic features are well developed and related to the south pole Veneneia impact (Saturnalia Fossae trough unit), elsewhere on the hemisphere they are rare and subdued (Saturnalia Fossae cratered unit). In these pre-Rheasilvia units we observed an unexpectedly high frequency of impact craters up to ∼10 km in diameter, whose formation could in part be related to the Rheasilvia basin-forming event. The Rheasilvia impact has potentially affected the northern hemisphere also with S–N small-scale lineations, but without covering it with an ejecta blanket. Post-Rheasilvia impact craters are small (<60 km in diameter) and show a wide range of degradation states due to impact gardening and mass wasting processes. Where fresh, they display an ejecta blanket, bright rays and slope movements on walls. In places, crater rims have dark material ejecta and some crater floors are covered by ponded material interpreted as impact melt.

Date Created
2014-12-01
Agent