Analysis of Local Minima arising from Potential-Based Controllers for Multi-Robot Transport with Convex Obstacle Avoidance
Description
This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling, modern control theory, script-based system simulation, and autonomous systems design. Simulation and computational software MATLAB and Simulink® were used in this thesis.
To achieve this goal, a model of a swarm performing a collective transport task in a bounded domain featuring convex obstacles was simulated in MATLAB/ Simulink®. The closed-loop dynamic equations of this model were linearized about an equilibrium state with angular acceleration and linear acceleration set to zero. The simulation was run over 30 times to confirm system ability to successfully transport the payload to a goal point without colliding with obstacles and determine ideal operating conditions by testing various orientations of objects in the bounded domain. An additional purely MATLAB simulation was run to identify local minima of the Hessian of the navigation-like potential function. By calculating this Hessian periodically throughout the system’s progress and determining the signs of its eigenvalues, a system could check whether it is trapped in a local minimum, and potentially dislodge itself through implementation of a stochastic term in the robot controllers. The eigenvalues of the Hessian calculated in this research suggested the model local minima were degenerate, indicating an error in the mathematical model for this system, which likely incurred during linearization of this highly nonlinear system.
To achieve this goal, a model of a swarm performing a collective transport task in a bounded domain featuring convex obstacles was simulated in MATLAB/ Simulink®. The closed-loop dynamic equations of this model were linearized about an equilibrium state with angular acceleration and linear acceleration set to zero. The simulation was run over 30 times to confirm system ability to successfully transport the payload to a goal point without colliding with obstacles and determine ideal operating conditions by testing various orientations of objects in the bounded domain. An additional purely MATLAB simulation was run to identify local minima of the Hessian of the navigation-like potential function. By calculating this Hessian periodically throughout the system’s progress and determining the signs of its eigenvalues, a system could check whether it is trapped in a local minimum, and potentially dislodge itself through implementation of a stochastic term in the robot controllers. The eigenvalues of the Hessian calculated in this research suggested the model local minima were degenerate, indicating an error in the mathematical model for this system, which likely incurred during linearization of this highly nonlinear system.
Details
Contributors
- Baye-Wallace, Lily Catherine (Author)
- Berman, Spring (Thesis director)
- Marvi, Hamidreza (Committee member)
- Mechanical and Aerospace Engineering Program (Contributor)
- School of Music, Dance and Theatre (Contributor)
- School for Engineering of Matter,Transport & Enrgy (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020-12
Topical Subject
Resource Type
Language
- eng
Additional Information
English
Series
- Academic Year 2020-2021
Extent
- 25 pages