Characterizing Low Frequency Delay Mode Contamination of the Hydrogen Epoch of Reionization Array

132610-Thumbnail Image.png
Description
The Hydrogen Epoch of Reionization Array, HERA, is a radio telescope currently being built in South Africa that plans to observe the early universe, specifically the earliest period of star and galaxy formation. It plans to use a tool called

The Hydrogen Epoch of Reionization Array, HERA, is a radio telescope currently being built in South Africa that plans to observe the early universe, specifically the earliest period of star and galaxy formation. It plans to use a tool called a delay spectrum to separate signal emitted from this time from the much brighter radio foregrounds. It is the purpose of this paper to outline the method used to characterize the contamination of these delay spectra by bright emissions of radio here on Earth called radio frequency interference, RFI. The portion of the bandwidth containing the signal from the period of initial star formation was specifically examined. In order to receive usable data, the HERA commissioning team was assisted in the evaluation of the most recent data releases. On the first batch of usable data, flagging algorithms were run in order to mask all of the RFI present. A method of filling these masked values was determined, which allowed for the delay spectrum to be observed. Various methods of injecting RFI into the data were tested which portrayed the large dependence of the delay spectrum on its presence. Finally, the noise power was estimated in order to predict whether or not the limitations observed in the dynamic range were comparable to the noise floor. By examining the evolution of the delay spectrum's power as a range of noise power was introduced, there is a good amount of evidence that this limitation is in fact the noise floor. From this, we see that excision algorithms and interpolation used are capable of removing the effects of most all of the RFI contamination.
Date Created
2019-05
Agent

Environmental Systematics and the Impact on 21-cm Epoch of Reionization Measurements

132940-Thumbnail Image.png
Description
The Epoch of Reionization (EoR) is the period in the evolution of the universe during which neutral hydrogen was ionized by the first luminous sources, and is closely linked to the formation of structure in the early universe. The Hydrogen

The Epoch of Reionization (EoR) is the period in the evolution of the universe during which neutral hydrogen was ionized by the first luminous sources, and is closely linked to the formation of structure in the early universe. The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer currently under construction in South Africa designed to study this era. Specifically, HERA is dedicated to studying the large-scale structure during the EoR and the preceding Cosmic Dawn by measuring the redshifted 21-cm line from neutral hydrogen. However, the 21-cm signal from the EoR is extremely faint relative to galactic and extragalactic radio foregrounds, and instrumental and environmental systematics make measuring the signal all the more difficult. Radio frequency interference (RFI) from terrestrial sources is one such systematic. In this thesis, we explore various methods of removing RFI from early science-grade HERA data and characterize the effects of different removal patterns on the final 21-cm power spectrum. In particular, we focus on the impact of masking narrowband signals, such as those characteristic of FM radio and aircraft or satellite communications, in the context of the algorithms currently used by the HERA collaboration for analysis.
Date Created
2019-05
Agent

Modeling and Testing of a CubeSat Attitude Control System

133491-Thumbnail Image.png
Description
Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect.

Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the satellite's Attitude Determination and Control System, or ADCS, must be properly tested and calibrated on the ground to ensure that it performs to its requirements. A commercial ADCS unit, the MAI-400, has been selected for this mission. The expected environmental disturbances must be characterized and modeled in order to inform planning the operations of this system. Appropriate control gains must also be selected to ensure the optimal satellite response. These gains are derived through a system model in Simulink and its response optimization tool, and these gains are then tested in a supplier provided Dynamic Simulator.
Date Created
2018-05
Agent

The First Murchison Widefield Array Low-Frequency Radio Observations of Cluster Scale Non-Thermal Emission: The Case of Abell 3667

129349-Thumbnail Image.png
Description

We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has

We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has been reported to contain a faint radio halo and bridge. The origin of radio haloes, relics and bridges is still unclear, however galaxy cluster merger seems to be an important factor. We clearly detect the north-west (NW) and south-east radio relics in A3667 and find an integrated flux density at 149 MHz of 28.1 ± 1.7 and 2.4 ± 0.1 Jy, respectively, with an average spectral index, between 120 and 1400 MHz, of −0.9 ± 0.1 for both relics. We find evidence of a spatial variation in the spectral index across the NW relic steepening towards the centre of the cluster, which indicates an ageing electron population. These properties are consistent with higher frequency observations. We detect emission that could be associated with a radio halo and bridge. However, due to the presence of poorly sampled large-scale Galactic emission and blended point sources we are unable to verify the exact nature of these features.

Date Created
2014-11-21
Agent

WSCLEAN: An Implementation of a Fast, Generic Wide-Field Imager for Radio Astronomy

129529-Thumbnail Image.png
Description

Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the

Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependences of CASA's w-projection and our new imager are analyzed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarization correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.

Date Created
2014-10-11
Agent