The recall dynamics of importance in delayed free recall
- Author (aut): Stefanidi, Aikaterini
- Thesis advisor (ths): Brewer, Gene A.
- Committee member: Glenberg, Arthur
- Committee member: Goldinger, Stephen
- Publisher (pbl): Arizona State University
Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16–17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of “sameness.”
Recent studies (e.g., Kuhn and Tatler, 2005) have suggested that magic tricks can provide a powerful and compelling domain for the study of attention and perception. In particular, many stage illusions involve attentional misdirection, guiding the observer's gaze to a salient object or event, while another critical action, such as sleight of hand, is taking place. Even if the critical action takes place in full view, people typically fail to see it due to inattentional blindness (IB). In an eye-tracking experiment, participants watched videos of a new magic trick, wherein a coin placed beneath a napkin disappears, reappearing under a different napkin. Appropriately deployed attention would allow participants to detect the “secret” event that underlies the illusion (a moving coin), as it happens in full view and is visible for approximately 550 ms. Nevertheless, we observed high rates of IB. Unlike prior research, eye-movements during the critical event showed different patterns for participants, depending upon whether they saw the moving coin. The results also showed that when participants watched several “practice” videos without any moving coin, they became far more likely to detect the coin in the critical trial. Taken together, the findings are consistent with perceptual load theory (Lavie and Tsal, 1994).