Improving Salmonella Vector With Recmutation to Stabilize the DNA Cargoes

129021-Thumbnail Image.png
Description

Background: Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several

Background: Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in Salmonella enterica.

Results: The effect of recA, recF and recJ deletions on DNA recombination was examined in three serotypes of Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ΔrecA or ΔrecF mutation; (2) in all three Salmonella serotypes, both ΔrecA and ΔrecF mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) ΔrecA and ΔrecF mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a ΔrecJ mutation could reduce plasmid recombination but was less effective than ΔrecA and ΔrecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec[superscript +] strains. A ΔrecA mutation reduced both intrachromosomal recombination and plasmid integration frequencies.

Conclusions: The ΔrecA and ΔrecF mutations can reduce plasmid recombination frequencies in Salmonella enterica, but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.

Date Created
2011-02-08
Agent

Fabrication, Structure, and Mechanism of Reduced Graphene Oxide-Based Carbon Composite Films

129571-Thumbnail Image.png
Description

This work suggests an effective approach to fabricate reduced graphene oxide-based carbon (RGO/C) composite films. The carbonization of graphene oxide-reinforced polyimide (GO/PI) composite films was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The crystalline structures and carbonized

This work suggests an effective approach to fabricate reduced graphene oxide-based carbon (RGO/C) composite films. The carbonization of graphene oxide-reinforced polyimide (GO/PI) composite films was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The crystalline structures and carbonized mechanism of the RGO/C composite films were investigated in detail by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the carbonization yields were improved due to the catalytic effects of RGO. These RGO/C composite films exhibited obvious structural orientations by SEM investigation of their cross sections.

Date Created
2014-04-11
Agent