Effects of Enhanced Milieu Training with Phonological Emphasis (EMT+PE) on Child with Cleft Lip +/- Palate Speech & Language Outcomes – A Pilot Telepractice Parent Training Study

131622-Thumbnail Image.png
Description
Purpose: The purpose of this study was to determine the effectiveness of parent training in Enhanced Milieu Teaching with Phonological Emphasis (EMT+PE) using telepractice on the speech and language outcomes of children with cleft lip and/or palate (CL/P).

Method: Three

Purpose: The purpose of this study was to determine the effectiveness of parent training in Enhanced Milieu Teaching with Phonological Emphasis (EMT+PE) using telepractice on the speech and language outcomes of children with cleft lip and/or palate (CL/P).

Method: Three parent-child dyads participated in the study. All child participants had nonsyndromic CL/P and ranged in age from 21 to 27months. Participants received three weekly telepractice intervention sessions, along with a total of three in-person parent training sessions. Intervention and training were conducted by an SLP and trained graduate student.

Results: All speech measures indicated a gain in essential speech skills for all three children when comparing pre-intervention to post-intervention assessment results. Positive improvement was seen across multiple language measures for all participants.

Conclusion: A parent implemented EMT+PE intervention program using telepractice is an effective way to increase child speech and language outcomes for children with CL/P. Speech and language targets should be combined and delivered simultaneously in intervention.
Date Created
2020-05
Agent

Multitasking, an EEG Experiment

132362-Thumbnail Image.png
Description
In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask”

In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an electrophysiological perspective different than that of stimuli which don’t require full attention or exhibit impulsive multitasking responses. This study investigates the P3 component which has been experimentally proven to be associated with mental workload through information processing and cognitive function in visual and auditory tasks, where in the multitasking domain the greater attention elicited, the larger P3 waves are produced. This experiment compares the amplitude of the P3 component of individual stimulus presentation to that of multitasking trials, taking note of the brain workload. This study questions if the average wave amplitude in a multitasking ERP experiment will be the same as the grand average when performing the two tasks individually with respect to the P3 component. The hypothesis is that the P3 amplitude will be smaller in the multitasking trial than in the individual stimulus presentation, indicating that the brain is not actually concentrating on both tasks at once (sequential multitasking instead of concurrent) and that the brain is not focusing on each stimulus to the same degree when it was presented individually. Twenty undergraduate students at Barrett, the Honors College at Arizona State University (10 males and 10 females, with a mean age of 18.75 years, SD= 1.517) right handed, with normal or corrected visual acuity, English as first language, and no evidence of neurological compromise participated in the study. The experiment results revealed that one- hundred percent of participants undergo sequential multitasking in the presence of two demanding stimuli in the electrophysiological data, behavioral data, and subjective data. In this particular study, these findings indicate that the presence of additional demanding stimuli causes the workload of the brain to decrease as attention deviates in a bottleneck process to the multiple requisitions for focus, indicated by a reduced P3 voltage amplitude with the multitasking stimuli when compared to the independent. This study illustrates the feasible replication of P3 cognitive workload results for demanding stimuli, not only impulsive-response experiments, to suggest the brain’s tendency to undergo sequential multitasking when faced with multiple demanding stimuli. In brief, this study demonstrates that when higher cognitive processing is required to interpret and respond to the stimuli, the human brain results to sequential multitasking (task- switching, not concurrent multitasking) in the face of more challenging problems with each stimulus requiring a higher level of focus, workload, and attention.
Date Created
2019-05
Agent

Learning Rate in Auditory Motor Adaptation

132557-Thumbnail Image.png
Description
Past studies have shown that auditory feedback plays an important role in maintaining the speech production system. Typically, speakers compensate for auditory feedback alterations when the alterations persist over time (auditory motor adaptation). Our study focused on how to increase

Past studies have shown that auditory feedback plays an important role in maintaining the speech production system. Typically, speakers compensate for auditory feedback alterations when the alterations persist over time (auditory motor adaptation). Our study focused on how to increase the rate of adaptation by using different auditory feedback conditions. For the present study, we recruited a total of 30 participants. We examined auditory motor adaptation after participants completed three conditions: Normal speaking, noise-masked speaking, and silent reading. The normal condition was used as a control condition. In the noise-masked condition, noise was added to the auditory feedback to completely mask speech outputs. In the silent reading condition, participants were instructed to silently read target words in their heads, then read the words out loud. We found that the learning rate in the noise-masked condition was lower than that in the normal condition. In contrast, participants adapted at a faster rate after they experience the silent reading condition. Overall, this study demonstrated that adaptation rate can be modified through pre-exposing participants to different types auditory-motor manipulations.
Date Created
2019-05
Agent

The Babble Boot Camp turns 2: Phonetic and phonemic inventory complexity and expressive vocabulary growth in infants with Classic Galactosemia undergoing an experimental prevention therapy

Description
Classic Galactosemia (CG) is a rare recessive metabolic disease resulting in the inability to digest galactose. Despite early detection via newborn screening and strict diet management, infants with CG are at high risk for severe speech (60%) and language (90%)

Classic Galactosemia (CG) is a rare recessive metabolic disease resulting in the inability to digest galactose. Despite early detection via newborn screening and strict diet management, infants with CG are at high risk for severe speech (60%) and language (90%) disorders (Waggoner, D., Buist, N., & Donnell, 1990). Although this risk is known since birth, no preventive treatment approaches in the area of speech and language have been developed. The Babble Boot Camp (BBC) is the first experimental proactive intervention for infants with CG ages 2 to 24 months. It is designed to stimulate early vocalization, coo, babble, first words, vocabulary growth, and syntactic complexity, with the goal of preventing or at least ameliorating the expected speech and language difficulties. All children undergo close monitoring. Day-long audio recordings, collected once per month using the Language Environment Analysis (LENA) system, are the source material for pre-speech and speech measures including Mean Babbling Level (MBL), Syllable Structure Level (SSL), and phonetic and phonemic inventory complexity.
Parent questionnaires are analyzed for expressive vocabulary size. Here, findings are described for the first 9 children who underwent the BBC and an untreated control child, all with CG. The initial results are consistent with higher MBL and SSL scores in the treatment cohort, compared to the untreated control infant. In addition, most children in the treatment cohort achieved larger vocabulary sizes than the control child. Of the four oldest children in the treatment cohort, three had expressive vocabularies within normal limits at 21 months. Phonetic
inventory complexity at 11 months predicted expressive vocabulary at 18 months. Given the high risk for speech and language disorders in children with CG, these results are encouraging, but an appropriately powered clinical trial is necessary to validate these findings. The BBC is on its way to a full clinical trial with 75 families, fully funded by the National Institutes of Health.
Date Created
2019-05
Agent

Sequential processing deficits in adults with dyslexia: The role of serial order and spatial orientation of letters during word pair comparison and spelling

133158-Thumbnail Image.png
Description
The purpose of this project was to investigate the hypothesis that adults with dyslexia tend to have lower accuracies in and take longer to process tasks involving the serial order of letters, compared to age and gender-matched controls. In Experiment

The purpose of this project was to investigate the hypothesis that adults with dyslexia tend to have lower accuracies in and take longer to process tasks involving the serial order of letters, compared to age and gender-matched controls. In Experiment 1, participants evaluated word pairs for differences. Half of the word pairs that they evaluated were the same, whereas the remaining word pairs differed along specific parameters such as sequential rearrangements ("left" vs "felt"), left/right reversals ("cob" vs "cod"), up/down reversals ("best" vs "pest"), homophones ("grown" vs "groan"), visual letter similarities ("tight" vs "fight"), and generic substitutions ("moan" vs "loan"). The response times and accuracies of both groups were recorded. In Experiment 2, the participants spelled single words to dictation using the spelling subtest from the Wechsler Individual Achievement Test\u2014II. Spelling errors were evaluated for errors such as sequential rearrangements, left/right reversals, homophones, substitutions, orthographic violations, omissions, and insertions. An example of a spelling error is the word "excitement" misspelled as "excietment", which involves a sequential rearrangement error. Another example is the word "apparently" misspelled as "aparently,", which involves an error of omission. Error frequencies within these error types for both groups were recorded. Experiment 3 evaluated whether left/right reversal errors during the letter-naming Rapid Automatized Naming and Rapid Alternating Stimulus (RAN/RAS) task were associated with left/right errors during word pair comparison and spelling and whether these visual reversal errors were also associated with errors of serial order. The group with dyslexia was split into two groups: group 1 included participants who did not make any left/right reversals during the RAN/RAS task and group 2 included participants who did make left/right reversals during the RAN/RAS task. The accuracies and reaction times of these three groups during the comparison and spelling assessments were recorded. The results of experiment 1 revealed that that adults with dyslexia had a significantly higher reaction time and lower accuracy during the sequential rearrangement and left/right reversal conditions. Experiment 2 demonstrated that the group with dyslexia made significantly more spelling errors during the homophone and omission conditions. The results of Experiment 3 showed associations between the sequential rearrangement and left/right conditions in both the word pair comparison and spelling task for participants with dyslexia who made left/right reversals during the RAN/RAS task. Overall, the participants with dyslexia who made left/right reversals during the RAN/RAS task seemed to have greater difficulty understanding the orientation of letters that occur on a horizontal plane, since this underlying pattern of errors was also seen throughout the spelling and word comparison tasks. These results show that left/right reversals and errors of serial order are evident in some, but not all adults with dyslexia. These errors may also characterize a distinct subtype of dyslexia. Further, errors of left/right reversal and serial order appear to be associated, so left/right reversals may represent a special form of serial order error that involves a change in the order of visual processing in the horizontal but not vertical axis of letter orientation.
Date Created
2018-12
Agent

Movement Makes Meaning: The Role of Fine Motor Skills in an Embodied Reading Comprehension Program

133178-Thumbnail Image.png
Description
Simulation theory states that text comprehension is achieved by simulating (or imagining) text content using motor, perceptual, and emotional systems. Hence, motor skill should correlate with comprehension skill. In fact, previous research has linked fine motor skills (FMS) with word

Simulation theory states that text comprehension is achieved by simulating (or imagining) text content using motor, perceptual, and emotional systems. Hence, motor skill should correlate with comprehension skill. In fact, previous research has linked fine motor skills (FMS) with word processing and mathematical skills. I predicted a positive relationship between FMS and reading comprehension. Children enrolled in a reading comprehension intervention were assessed on FMS using the Movement ABC-2. There was a significant correlation between FMS and comprehension of narrative texts, but contrary to the prediction, the correlation was negative. Also unexpected, the control condition performed better on comprehension questions than the intervention conditions. To try to understand these results, we examined the time each child took to answer the comprehension questions. Many children answered the questions quickly, and average time to answer the questions was strongly correlated with comprehension scores. Children may have been answering questions quickly (and randomly) in order to advance to the next story. Nonetheless, the data do not support a relationship between FMS and reading comprehension.
Date Created
2018-12
Agent

Genetic variations and associated electrophysiological and behavioral traits in children with childhood apraxia of speech

156527-Thumbnail Image.png
Description
Childhood Apraxia of Speech (CAS) is a severe motor speech disorder that is difficult to diagnose as there is currently no gold-standard measurement to differentiate between CAS and other speech disorders. In the present study, we investigate underlying biomarkers associated

Childhood Apraxia of Speech (CAS) is a severe motor speech disorder that is difficult to diagnose as there is currently no gold-standard measurement to differentiate between CAS and other speech disorders. In the present study, we investigate underlying biomarkers associated with CAS in addition to enhanced phenotyping through behavioral testing. Cortical electrophysiological measures were utilized to investigate differences in neural activation in response to native and non-native vowel contrasts between children with CAS and typically developing peers. Genetic analysis included full exome sequencing of a child with CAS and his unaffected parents in order to uncover underlying genetic variation that may be causal to the child’s severely impaired speech and language. Enhanced phenotyping was completed through extensive behavioral testing, including speech, language, reading, spelling, phonological awareness, gross/fine motor, and oral and hand motor tasks. Results from cortical electrophysiological measures are consistent with previous evidence of a heightened neural response to non-native sounds in CAS, potentially indicating over specified phonological representations in this population. Results of exome sequencing suggest multiple genetic variations contributing to the severely affected phenotype in the child and provide further evidence of heterogeneous genomic pathways associated with CAS. Finally, results of behavioral testing demonstrate significant impairments evident across tasks in CAS, suggesting underlying sequential processing deficits in multiple domains. Overall, these results have the potential to delineate functional pathways from genetic variations to the brain to observable behavioral phenotypes and motivate the development of preventative and targeted treatment approaches.
Date Created
2018
Agent

The Adult Communication, Cognitive, and Reading Profile of 22q11.2 Deletion Syndrome

133900-Thumbnail Image.png
Description
22q11.2 Deletion Syndrome (22q11.2DS) is one of the most frequent chromosomal microdeletion syndromes in humans. This case study focuses on the language and reading profile of a female adult with 22q11.2 Deletion Syndrome who was undiagnosed until the age of

22q11.2 Deletion Syndrome (22q11.2DS) is one of the most frequent chromosomal microdeletion syndromes in humans. This case study focuses on the language and reading profile of a female adult with 22q11.2 Deletion Syndrome who was undiagnosed until the age of 27 years old. To comprehensively describe the participant's profile, a series of assessment measures was administered in the speech, language, cognition, reading, and motor domains. Understanding how 22q11.2DS has impacted the life of a recently diagnosed adult will provide insight into how to best facilitate long-term language and educational support for this population and inform future research.
Date Created
2018-05
Agent

Effect of various attentional conditions on P300 and MMN ERP waveforms

135531-Thumbnail Image.png
Description
It is important to consider attention when designing and conducting an experiment due to the significant impact it can have on how people process information. This study compared the influence attention can have on performance of an auditory task. Using

It is important to consider attention when designing and conducting an experiment due to the significant impact it can have on how people process information. This study compared the influence attention can have on performance of an auditory task. Using an EEG system and measuring cortical evoked response potentials (ERPs) the assumptions about keeping eyes open during passive listening tasks which related to the low attention parameter of MMN, as well as requiring an active response for the high attention parameter of the P300 were tested. The hypotheses were that the presence of an active, focused component will increase the magnitude of the P300 (as is generally accepted), that the presence of an active, focused component will decrease the magnitude of the MMN (as is currently debated), and that closed eyes would diminish the magnitude of both components (as also is currently debated). The presence of significant values for both the P300 amplitude and P300 adaptive mean indicated a successful causal link between the presence of an active condition and an increased P300 waveform, while the high individual variability present throughout the data focus the scope of future study on MMN and P300.
Date Created
2016-05
Agent

A Functional and Structural MRI Investigation of the Neural Signatures of Dyslexia in Adults

134926-Thumbnail Image.png
Description
The International Dyslexia Association defines dyslexia as a learning disorder that is characterized by poor spelling, decoding, and word recognition abilities. There is still no known cause of dyslexia, although it is a very common disability that affects 1 in

The International Dyslexia Association defines dyslexia as a learning disorder that is characterized by poor spelling, decoding, and word recognition abilities. There is still no known cause of dyslexia, although it is a very common disability that affects 1 in 10 people. Previous fMRI and MRI research in dyslexia has explored the neural correlations of hemispheric lateralization and phonemic awareness in dyslexia. The present study investigated the underlying neurobiology of five adults with dyslexia compared to age- and sex-matched control subjects using structural and functional magnetic resonance imaging. All subjects completed a large battery of behavioral tasks as part of a larger study and underwent functional and structural MRI acquisition. This data was collected and preprocessed at the University of Washington. Analyses focused on examining the neural correlates of hemispheric lateralization, letter reversal mistakes, reduced processing speed, and phonemic awareness. There were no significant findings of hemispheric differences between subjects with dyslexia and controls. The subject making the largest amount of letter reversal errors had deactivation in their cerebellum during the fMRI language task. Cerebellar white matter volume and surface area of the premotor cortex was the largest in the individual with the slowest reaction time to tapping. Phonemic decoding efficiency had a high correlation with neural activation in the primary motor cortex during the fMRI motor task (r=0.6). Findings from the present study suggest that brain regions utilized during motor control, such as the cerebellum, premotor cortex, and primary motor cortex, may have a larger role in dyslexia then previously considered. Future studies are needed to further distinguish the role of the cerebellum and other motor regions in relation to motor control and language processing deficits related to dyslexia.
Date Created
2016-12
Agent