Isolation, Detection, and Quantification of Cancer Biomarkers in HPV-Associated Malignancies

128345-Thumbnail Image.png
Description

Human Papillomavirus (HPV) infection has been recognized as the main etiologic factor in the development of various cancers including penile, vulva, oropharyngeal and cervical cancers. In the development of cancer, persistent HPV infections induce E6 and E7 oncoproteins, which promote

Human Papillomavirus (HPV) infection has been recognized as the main etiologic factor in the development of various cancers including penile, vulva, oropharyngeal and cervical cancers. In the development of cancer, persistent HPV infections induce E6 and E7 oncoproteins, which promote cell proliferation and carcinogenesis resulting elevated levels of host antibodies (e.g., anti-HPV16 E7 antibody). Currently, these cancers are clinically diagnosed using invasive biopsy-based tests, which are performed only in centralized labs by experienced clinical staff using time-consuming and expensive tools and technologies. Therefore, these obstacles constrain their utilization at primary care clinics and in remote settings, where resources are limited. Here, we present a rapid, inexpensive, reliable, easy-to-use, customized immunoassay platform following a microfluidic filter device to detect and quantify anti-HPV16 E7 antibodies from whole blood as a non-invasive assisting technology for diagnosis of HPV-associated malignancies, especially, at primary healthcare and remote settings. The platform can detect and quantify anti-HPV16 E7 antibody down to 2.87 ng/mL. We further validated our immunoassay in clinical patient samples and it provided significantly high responses as compared to control samples. Thus, it can be potentially implemented as a pretesting tool to identify high-risk groups for broad monitoring of HPV-associated cancers in resource-constrained settings.

Date Created
2017-06-12
Agent

Application of Flat Panel OLED Display Technology for the Point-of-Care Detection of Circulating Cancer Biomarkers

128569-Thumbnail Image.png
Description

Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined

Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm[superscript 2]. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers.

Date Created
2016-07-04
Agent