Optimal Localization of Diffusion Sources in Complex Networks

128342-Thumbnail Image.png
Description

Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for

Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications.

Date Created
2017-04-12
Agent

Reconstructing Direct and Indirect Interactions in Networked Public Goods Game

128511-Thumbnail Image.png
Description

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

Date Created
2016-07-22
Agent