Reconciling the Differences Between a Bottom-Up and Inverse-Estimated FFCO2 Emissions Estimate in a Large U.S. Urban Area

128022-Thumbnail Image.png
Description

The INFLUX experiment has taken multiple approaches to estimate the carbon dioxide (CO2) flux in a domain centered on the city of Indianapolis, Indiana. One approach, Hestia, uses a bottom-up technique relying on a mixture of activity data, fuel statistics,

The INFLUX experiment has taken multiple approaches to estimate the carbon dioxide (CO2) flux in a domain centered on the city of Indianapolis, Indiana. One approach, Hestia, uses a bottom-up technique relying on a mixture of activity data, fuel statistics, direct flux measurement and modeling algorithms. A second uses a Bayesian atmospheric inverse approach constrained by atmospheric CO2 measurements and the Hestia emissions estimate as a prior CO2 flux. The difference in the central estimate of the two approaches comes to 0.94 MtC (an 18.7% difference) over the eight-month period between September 1, 2012 and April 30, 2013, a statistically significant difference at the 2-sigma level. Here we explore possible explanations for this apparent discrepancy in an attempt to reconcile the flux estimates. We focus on two broad categories: 1) biases in the largest of bottom-up flux contributions and 2) missing CO2 sources. Though there is some evidence for small biases in the Hestia fossil fuel carbon dioxide (FFCO2) flux estimate as an explanation for the calculated difference, we find more support for missing CO2 fluxes, with biological respiration the largest of these. Incorporation of these differences bring the Hestia bottom-up and the INFLUX inversion flux estimates into statistical agreement and are additionally consistent with wintertime measurements of atmospheric 14CO2. We conclude that comparison of bottom-up and top-down approaches must consider all flux contributions and highlight the important contribution to urban carbon budgets of animal and biotic respiration. Incorporation of missing CO2 fluxes reconciles the bottom-up and inverse-based approach in the INFLUX domain.

Date Created
2017-08-03
Agent

Quantification of Urban Atmospheric Boundary Layer Greenhouse Gas Dry Mole Fraction Enhancements in the Dormant Season: Results from the Indianapolis Flux Experiment (INFLUX)

128023-Thumbnail Image.png
Description

We assess the detectability of city emissions via a tower-based greenhouse gas (GHG) network, as part of the Indianapolis Flux (INFLUX) experiment. By examining afternoon-averaged results from a network of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mole

We assess the detectability of city emissions via a tower-based greenhouse gas (GHG) network, as part of the Indianapolis Flux (INFLUX) experiment. By examining afternoon-averaged results from a network of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mole fraction measurements in Indianapolis, Indiana for 2011–2013, we quantify spatial and temporal patterns in urban atmospheric GHG dry mole fractions. The platform for these measurements is twelve communications towers spread across the metropolitan region, ranging in height from 39 to 136 m above ground level, and instrumented with cavity ring-down spectrometers. Nine of the sites were deployed as of January 2013 and data from these sites are the focus of this paper. A background site, chosen such that it is on the predominantly upwind side of the city, is utilized to quantify enhancements caused by urban emissions. Afternoon averaged mole fractions are studied because this is the time of day during which the height of the boundary layer is most steady in time and the area that influences the tower measurements is likely to be largest. Additionally, atmospheric transport models have better performance in simulating the daytime convective boundary layer compared to the nighttime boundary layer. Averaged from January through April of 2013, the mean urban dormant-season enhancements range from 0.3 ppm CO2 at the site 24 km typically downwind of the edge of the city (Site 09) to 1.4 ppm at the site at the downwind edge of the city (Site 02) to 2.9 ppm at the downtown site (Site 03). When the wind is aligned such that the sites are downwind of the urban area, the enhancements are increased, to 1.6 ppm at Site 09, and 3.3 ppm at Site 02. Differences in sampling height affect the reported urban enhancement by up to 50%, but the overall spatial pattern remains similar. The time interval over which the afternoon data are averaged alters the calculated urban enhancement by an average of 0.4 ppm. The CO2 observations are compared to CO2 mole fractions simulated using a mesoscale atmospheric model and an emissions inventory for Indianapolis. The observed and modeled CO2 enhancements are highly correlated (r2 = 0.94), but the modeled enhancements prior to inversion average 53% of those measured at the towers. Following the inversion, the enhancements follow the observations closely, as expected. The CH4 urban enhancement ranges from 5 ppb at the site 10 km predominantly downwind of the city (Site 13) to 21 ppb at the site near the landfill (Site 10), and for CO ranges from 6 ppb at the site 24 km downwind of the edge of the city (Site 09) to 29 ppb at the downtown site (Site 03). Overall, these observations show that a dense network of urban GHG measurements yield a detectable urban signal, well-suited as input to an urban inversion system given appropriate attention to sampling time, sampling altitude and quantification of background conditions.

Date Created
2017-06-13
Agent

The Indianapolis Flux Experiment (INFLUX): A Test-Bed for Developing Urban Greenhouse Gas Emission Measurements

128096-Thumbnail Image.png
Description

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

Date Created
2017-05-23
Agent