A Non-Stationary Analysis Using Ensemble Empirical Mode Decomposition to Detect Anomalies in Building Energy Consumption

127865-Thumbnail Image.png
Description

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

Date Created
2016-05-20
Agent

Low-Investment Energy Retrofit Framework for Small and Medium Office Buildings

127878-Thumbnail Image.png
Description

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light.

Date Created
2016-05-20
Agent

Learning Energy Consumption and Demand Models Through Data Mining for Reverse Engineering

127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

Date Created
2015-12-09
Agent

Determining the Feasibility of Statistical Techniques to Identify the Most Important Input Parameters of Building Energy Models

127929-Thumbnail Image.png
Description

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy demand of individual buildings through their physical properties and energy use for specific end uses (e.g., lighting, appliances, and water heating). Researchers then scale up these model results to represent the building stock of the region studied.

Studies reveal that there is a lack of information about the building stock and associated modeling tools and this lack of knowledge affects the assessment of building energy efficiency strategies. Literature suggests that the level of complexity of energy models needs to be limited. Accuracy of these energy models can be elevated by reducing the input parameters, alleviating the need for users to make many assumptions about building construction and occupancy, among other factors. To mitigate the need for assumptions and the resulting model inaccuracies, the authors argue buildings should be described in a regional stock model with a restricted number of input parameters. One commonly-accepted method of identifying critical input parameters is sensitivity analysis, which requires a large number of runs that are both time consuming and may require high processing capacity.

This paper utilizes the Energy, Carbon and Cost Assessment for Buildings Stocks (ECCABS) model, which calculates the net energy demand of buildings and presents aggregated and individual- building-level, demand for specific end uses, e.g., heating, cooling, lighting, hot water and appliances. The model has already been validated using the Swedish, Spanish, and UK building stock data. This paper discusses potential improvements to this model by assessing the feasibility of using stepwise regression to identify the most important input parameters using the data from UK residential sector. The paper presents results of stepwise regression and compares these to sensitivity analysis; finally, the paper documents the advantages and challenges associated with each method.

Date Created
2015-09-14
Agent

Design for Disassembly and Deconstruction: Challenges and Opportunities

127931-Thumbnail Image.png
Description

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste management methods. Although some authors and organizations have published rich guides addressing the DfD's principles, there are only a few buildings already developed in this area. This study aims to find the challenges in the current practice of deconstruction activities and the gaps between its theory and implementation. Furthermore, it aims to provide insights about how DfD can create opportunities to turn these concepts into strategies that can be largely adopted by the construction industry stakeholders in the near future.

Date Created
2015-09-14
Agent

A New Approach to Impacting the Construction Industry

156056-Thumbnail Image.png
Description
Construction industry performance (schedule, budget, and customer satisfaction) has not improved over the last 20 years. This investigation proposes that academic/industry research using actual project data may have more impact on improving industry performance than traditional survey-based research. The authors

Construction industry performance (schedule, budget, and customer satisfaction) has not improved over the last 20 years. This investigation proposes that academic/industry research using actual project data may have more impact on improving industry performance than traditional survey-based research. The authors utilize the CIB and CIB W117 platforms to proliferate the concept of academic/industry test results to increase the impact on the construction industry. The authors propose to use the existing journal and then share the journal papers on an online platform (ResearchGate.net) ensuring a faster proliferation of the key academic/industry test results into the academic research community. The mechanism of the academic/industry test results will have more of an impact on industry practices than the traditional publication systems, which concentrate on literature reviews and surveys to collect industry opinions and analyze the information to change industry practices. The proliferation of industry research results will create transparency in the construction industry and the academic research community.
Date Created
2017
Agent

The Causes of the Municipal Solid Waste and the Greenhouse Gas Emissions From the Waste Sector in the United States

127949-Thumbnail Image.png
Description

The United State generates the most waste among OECD countries, and there are adverse effects of the waste generation. One of the most serious adverse effects is greenhouse gas, especially CH4, which causes global warming. However, the amount of waste

The United State generates the most waste among OECD countries, and there are adverse effects of the waste generation. One of the most serious adverse effects is greenhouse gas, especially CH4, which causes global warming. However, the amount of waste generation is not decreasing, and the United State recycling rate, which could reduce waste generation, is only 26%, which is lower than other OECD countries. Thus, waste generation and greenhouse gas emission should decrease, and in order for that to happen, identifying the causes should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling waste influences carbon dioxide emissions from the waste sector. The annual-based U.S. data from 1990 to 2012 were used. The data were collected from various data sources, and the Granger causality test was applied for identifying the causal relationships. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generation significantly cause positive and negative greenhouse gas emissions from the waste sector, respectively. This implies that the waste generation will not decrease even if GDP increases. And, if waste generation decreases or recycling rate increases, the greenhouse gas emission will decrease. Based on these results, it is expected that the waste generation and carbon dioxide emission from the waste sector can decrease more efficiently.

Date Created
2016-05-20
Agent

Analyzing Arizona OSHA Injury Reports Using Unsupervised Machine Learning

127964-Thumbnail Image.png
Description

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards.

Date Created
2016-05-20
Agent

The LEED Rating System and the International Green Construction Code: A Comparative Analysis of Green Building Design Approaches

135209-Thumbnail Image.png
Description
Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.
Date Created
2016-05
Agent

An Analysis of Craft Labor Productivity

134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
Date Created
2016-12
Agent