The Effect of Perturbation-Based Training on the Balance of Individuals with Multiple Sclerosis
Description
Multiple Sclerosis (MS) is a debilitating neurological disease that affects millions of individuals across the world. There is no current cure for the disease, so much of the patient treatment is focused on management of the disease. One of the potential effects of having MS is having a decrease in balance which leads to a greater risk in sustaining a fall. It has been found in previous studies that MS patients have slower reaction times compared to healthy controls. Furthermore, electromyography (EMG) is an effective way to measure a subject's reaction to a perturbation. This study aims to see if MS subjects can improve their reaction times through a series of perturbation-based training visits. 18 MS patients and 11 healthy controls were recruited for this study. Each subject went through two baseline visits, six training visits, and two post-assessment visits. During each visit, subjects went through a series of forward and backward perturbations from a stand to react position administered by a dual-belt perturbation treadmill. The subjects' reaction times were measured by taking the difference between the onset of the treadmill movement and the onset of the muscle activation. This muscle activation was measured by placing EMG sensors on the tibialis anterior muscle and medial gastrocnemius muscle on each leg. After running a repeated measures ANOVA test, it was found that there were no significant differences in the reaction times between MS participants and healthy controls. However, the overall trend in the data was promising, as MS patients did improve their performance in backward-stepping slightly. Adding more participants to the study could strengthen this trend. It was also found that males across both groups significantly improved their reaction times compared to females. However, it is unknown why this occurred. Future goals would be to add more participants to the study and follow-up with MS patients to see if they have a decrease in falls post-training.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2024-05
Agent
- Author (aut): Salek, Aydin
- Thesis director: Peterson, Daniel
- Committee member: Lee, Hyunglae
- Contributor (ctb): Barrett, The Honors College
- Contributor (ctb): Harrington Bioengineering Program