"The linear arrangement of six sex-linked factors in drosophila, as shown by their mode of association” (1913), by Alfred Henry Sturtevant

173402-Thumbnail Image.png
Description

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila, the common fruit fly. In his experiments, Sturtevant determined the relative positions of six genetic factors on a fly’s chromosome by creating a process called gene mapping. Sturtevant’s work on gene mapping inspired later mapping techniques in the twentieth and twenty-first centuries, techniques that helped scientists identify regions of the chromosome that when mutated cause organisms to develop abnormally and to create treatments to cure those kinds of disorders.

Date Created
2017-05-22

“Sex Limited Inheritance in Drosophila” (1910), by Thomas Hunt Morgan

173399-Thumbnail Image.png
Description

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males. Through more breeding analysis, Morgan found that the genetic factor controlling eye color in the flies was on the same chromosome that determined sex. That result indicated that eye color and sex were both tied to chromosomes and helped Morgan and colleagues establish that chromosomes carry the genes that allow offspring to inherit traits from their parents.

Date Created
2017-05-22

Calvin Bridges’ Experiments on Nondisjunction as Evidence for the Chromosome Theory of Heredity (1913-1916)

173396-Thumbnail Image.png
Description

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila,

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm and egg cells. Nondisjunction, as described by Bridges, caused sperm or egg cells to contain abnormal amounts of chromosomes. In some cases, that caused the offspring produced by the sperm or eggs to display traits that they would typically not have. His research on nondisjunction provided evidence that chromosomes carry genetic traits, including those that determine the sex of an organism.

Date Created
2017-05-18

Alfred Henry Sturtevant (1891–1970)

173388-Thumbnail Image.png
Description

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In 1913, as an undergraduate, Sturtevant created one of the earliest genetic maps of a fruit fly chromosome, which showed the relative positions of genes along the chromosome. At the California Institute of Technology in Pasadena, California, he later created one of the first fate maps, which tracks embryonic cells throughout their development into an adult organism. Sturtevant’s contributions helped scientists explain genetic and cellular processes that affect early organismal development.

Date Created
2017-05-20

Calvin Blackman Bridges (1889-1938)

173385-Thumbnail Image.png
Description

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena,

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common fruit fly. Throughout the early twentieth century, researchers were gathering evidence that genes, or what Gregor Mendel had called the factors that control heredity, are located on chromosomes. At Columbia, Morgan disputed the theory, but in 1916, Calvin Bridges published evidence that, according to Morgan, did much to convince skeptics of that theory. Bridges also established that specific chromosomes function in determining sex in Drosophila.

Date Created
2017-05-19

Hermann Joseph Muller (1890-1967)

173361-Thumbnail Image.png
Description

Hermann Joseph Muller studied the effects of x-ray radiation on genetic material in the US during the twentieth century. At that time, scientists had yet to determine the dangers that x-rays presented. In 1927, Muller demonstrated that x-rays, a form

Hermann Joseph Muller studied the effects of x-ray radiation on genetic material in the US during the twentieth century. At that time, scientists had yet to determine the dangers that x-rays presented. In 1927, Muller demonstrated that x-rays, a form of high-energy radiation, can mutate the structure of genetic material. Muller warned others of the dangers of radiation, advising radiologists to protect themselves and their patients from radiation. He also opposed the indiscriminate use of radiation in medical and industrial fields. In 1946, he received the Nobel Prize in Physiology or Medicine for his lifetime work involving radiation and genetic mutation. Muller's worked enabled scientists to directly study mutations without having to rely on naturally occurring mutations. Furthermore, Muller showed that radiation, even in small doses, leads to genetic mutations primarily in germ cells, cells which give rise to sperm and egg cells.

Date Created
2017-05-25

"Control of Corneal Differentiation by Extracellular Materials" (1974), by Stephen Meier and Elizabeth D. Hay

173292-Thumbnail Image.png
Description

In 1974, Elizabeth Dexter Hay and Stephen Meier in the US conducted an experiment that demonstrated that the extracellular matrix, the mesh-like network of proteins and carbohydrates found outside of cells in the body, interacted with cells and affected their

In 1974, Elizabeth Dexter Hay and Stephen Meier in the US conducted an experiment that demonstrated that the extracellular matrix, the mesh-like network of proteins and carbohydrates found outside of cells in the body, interacted with cells and affected their behaviors. In the experiment, Hay and Meier removed the outermost layer of cells that line the front of the eye, called corneal epithelium, from developing chick embryos. Prior to their experiment, scientists observed that corneal epithelium produced collagen, the primary component of the extracellular matrix, which provides structural support to cells throughout the body. In their experiment, Hay and Meier confirmed that the lens capsule, a collagen-containing structure of the eye’s extracellular matrix, induced the corneal epithelium to produce collagen. That result demonstrated that extracellular matrix interactions affect tissue
development in developing embryos.

Date Created
2017-06-19

Elizabeth Dexter Hay (1927–2007)

173146-Thumbnail Image.png
Description

Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell

Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell behavior. Cell growth, cell migration, and gene expression are influenced by the interaction between cells and their extracellular matrix. Hay also discovered a phenomenon later called epithelial-mesenchymal transition, a process that occurs during normal embryo and adult development in which epithelial cells, cells that line external and internal surfaces of the body, transform into mesenchymal stem cells, connective tissue cells that are capable of turning into other cell types. Hay's work helped researchers explain normal developmental processes and enabled research into abnormal processes that can cause developmental defects and diseases.

Date Created
2017-07-26