Image Deconvolution using an Alternating Minimizer

Description

When creating computer vision applications, it is important to have a clear image of what is represented such that further processing has the best representation of the underlying data. A common factor that impacts image quality is blur, caused either

When creating computer vision applications, it is important to have a clear image of what is represented such that further processing has the best representation of the underlying data. A common factor that impacts image quality is blur, caused either by an intrinsic property of the camera lens or by introducing motion while the camera’s shutter is capturing an image. Possible solutions for reducing the impact of blur include cameras with faster shutter speeds or higher resolutions; however, both of these solutions require utilizing more expensive equipment, which is infeasible for instances where images are already captured. This thesis discusses an iterative solution for deblurring an image using an alternating minimization technique through regularization and PSF reconstruction. The alternating minimizer is then used to deblur a sample image of a pumpkin field to demonstrate its capabilities.

Date Created
2023-05
Agent

Convoluted Processes: The Use and Misuse of Machine Learning in Data Analysis and Prediction

168210-Thumbnail Image.png
Description

With the rapid increase of technological capabilities, particularly in processing power and speed, the usage of machine learning is becoming increasingly widespread, especially in fields where real-time assessment of complex data is extremely valuable. This surge in popularity of machine

With the rapid increase of technological capabilities, particularly in processing power and speed, the usage of machine learning is becoming increasingly widespread, especially in fields where real-time assessment of complex data is extremely valuable. This surge in popularity of machine learning gives rise to an abundance of potential research and projects on further broadening applications of artificial intelligence. From these opportunities comes the purpose of this thesis. Our work seeks to meaningfully increase our understanding of current capabilities of machine learning and the problems they can solve. One extremely popular application of machine learning is in data prediction, as machines are capable of finding trends that humans often miss. Our effort to this end was to examine the CVE dataset and attempt to predict future entries with Random Forests. The second area of interest lies within the great promise being demonstrated by neural networks in the field of autonomous driving. We sought to understand the research being put out by the most prominent bodies within this field and to implement a model on one of the largest standing datasets, Berkeley DeepDrive 100k. This thesis describes our efforts to build, train, and optimize a Random Forest model on the CVE dataset and a convolutional neural network on the Berkeley DeepDrive 100k dataset. We document these efforts with the goal of growing our knowledge on (and usage of) machine learning in these topics.

Date Created
2022-05
Agent