Household accessibility to heat refuges: Residential air conditioning, public cooled space, and walkability

103-Thumbnail Image.png
Description

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space)

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling centers is not based on the location of existing cooling resources (residential air conditioning and air conditioned public space), raising questions of the equitability of access to heat refuges.

Using Los Angeles County, California and Maricopa County, Arizona (whose county seat is Phoenix) we explore the distribution of private and public cooling resources and access inequities at the household level. We do this by evaluating the presence of in-home air conditioning and developing a walking-based accessibility measure to air conditioned public space using a combined cumulative opportunities-gravity approach. We find significant inequities in the distribution of residential air conditioning across both regions which are largely attributable to building age and inter/intra-regional climate differences. There are also regional disparities in walkable access to public cooled space.

At average walking speeds, we find that official cooling centers are only accessible to a small fraction of households (3% in Los Angeles, 2% in Maricopa) while a significantly higher number of households (80% in Los Angeles, 39% in Maricopa) have access to at least one other type of public cooling resource which includes libraries and commercial establishments. Aggregated to a neighborhood level, we find that there are areas within each region where access to cooled space (either public or private) is limited which may increase the health risks associated with heat.

Date Created
2016

Future Electricity Supply Vulnerability and Climate Change: A Case Study of Maricopa and Los Angeles Counties

Description

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles)

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles) based on climate-related changes in electricity generation capacity. Planning reserve margins (PRM) are used to estimate the potential for blackouts and brownouts under future climate scenarios. Reductions in PRM occur in both cities in 2016 with the most significant reductions occurring in regions relying more heavily on hydropower.