Developing an Augmented Reality Solution for Mapping Underground Infrastructure

158495-Thumbnail Image.png
Description

Underground infrastructure is a critical part of the essential utility services provided to society and the backbone of modern civilization. However, now more than ever before, the disastrous events of a striking underground utilities cost billions of dollars each year

Underground infrastructure is a critical part of the essential utility services provided to society and the backbone of modern civilization. However, now more than ever before, the disastrous events of a striking underground utilities cost billions of dollars each year in societal damages. Advanced technology and sophisticated visualization techniques such as augmented reality (AR) now play a significant role in mitigating such devastating consequences. Therefore, it is vitally important to coordinate resources, share information, and ensure efficient communication between construction personnel and utility owners. Besides, geographic information systems (GIS) provide a solution for interoperability in the construction industry. Applying such technologies in the field of underground construction requires accurate and up-to-date information. However, there is currently limited research that has integrated AR and GIS and evaluated the effectiveness and usability of the combination in this domain. The main objective of this research was to develop an integrated AR-GIS for mapping and capturing underground utilities using a mobile device. To achieve these objectives, a design research approach utilized to develop and evaluate a mobile extended-reality (XR-GIS) application. This research has produced an efficient solution for data collection and sharing among stakeholders in the underground construction industry. The main challenge in creating a reliable and adaptive outdoor AR system is the accurate registration of virtual objects in the real world. Due to the limited accuracy of smartphones, this study used an external Global Positioning System (GPS) devices to reduce positional error. The primary motivation behind this research is to make the construction industry more aware of the benefits of leveraging AR to prevent utility strikes and enhance public safety.

This dissertation fills the gap in the knowledge regarding applying Augmented Reality (AR) in the underground infrastructure mapping. This study’s three research objectives are:

(1) Identify the challenges and barriers facing the underground construction industry when applying AR.

(2) Develop an integrated AR-GIS for mapping and capturing underground utilities using a mobile device.

(3) Evaluate the horizontal accuracy of the captured data used by the AR phone application XR-GIS that has been developed by the author.

Date Created
2020
Agent

Multi-Scale Characterization of Bitumen Doped with Sustainable Modifiers

158480-Thumbnail Image.png
Description

This research is a comprehensive study of the sustainable modifiers for asphalt binder. It is a common practice to use modifiers to impart certain properties to asphalt binder; however, in order to facilitate the synthesis and design of highly effective

This research is a comprehensive study of the sustainable modifiers for asphalt binder. It is a common practice to use modifiers to impart certain properties to asphalt binder; however, in order to facilitate the synthesis and design of highly effective sustainable modifiers, it is critical to thoroughly understand their underlying molecular level mechanisms in combination with micro and macro-level behavior. Therefore, this study incorporates a multi-scale approach using computational modeling and laboratory experiments to provide an in-depth understanding of the mechanisms of interaction between selected modifiers and the constituents of asphalt binder, at aged and unaged conditions. This study investigated the effect of paraffinic wax as a modifier for virgin binder in warm-mix asphalt that can reduce the environmental burden of asphalt pavements. The addition of wax was shown to reduce the viscosity of bitumen by reducing the self-interaction of asphaltene molecules and penetrating the existing nano agglomerates of asphaltenes. This study further examined how the interplay of various modifiers affects the modified binder’s thermomechanical properties. It was found that the presence of wax-based modifiers has a disrupting effect on the role of polyphosphoric acid that is another modifier of bitumen and its interactions with resin-type molecules.

This study was further extended to using nanozeolite as a mineral carrier for wax to better disperse wax in bitumen and reduce the wax's adverse effects such as physical hardening at low service temperatures and rutting at high service temperatures. This novel technique showed that using a different method of adding a modifier can help reduce the modifier's unwanted effects. It further showed that nanozeolite could carry wax-based modifiers and release them in bitumen, then acting as a scavenger for acidic compounds in the binder. This, in turn, could promote the resistance of asphalt binder to moisture damage by reducing the quantity of acidic compounds at the interface between the binder and the stone aggregates.

Furthermore, this study shows that iso-paraffin wax can reduce oxidized asphaltene molecules self-interaction and therefore, reduce the viscosity of aged bitumen while cause brittleness at low temperatures.

Additionally, a cradle to gate life-cycle assessment was performed for a new bio-modifier obtained from swine manure. This study showed that by partially replacing the bitumen with bio-binder from swine manure, the carbon footprint of the binder can be reduced by 10% in conjunction with reducing the cost and environmental impact of storing the manure in lagoons.

Date Created
2020
Agent

Implications of Bio-modification on Moisture Damage Mechanisms in Asphalt Binder Matrix

158457-Thumbnail Image.png
Description

Bio-modification of asphalt binder brings significant benefits in terms of increasing sustainable and environmental practices, stabilizing prices, and decreasing costs. However, bio-modified asphalt binders have shown varying performance regarding susceptibility to moisture damage; some bio-oil modifiers significantly increase asphalt binder's

Bio-modification of asphalt binder brings significant benefits in terms of increasing sustainable and environmental practices, stabilizing prices, and decreasing costs. However, bio-modified asphalt binders have shown varying performance regarding susceptibility to moisture damage; some bio-oil modifiers significantly increase asphalt binder's susceptibility to moisture damage. This variability in performance is largely due to the large number of bio-masses available for use as sources of bio-oil, as well as the type of processing procedure followed in converting the bio-mass into a bio-oil for modifying asphalt binder. Therefore, there is a need for a method of properly evaluating the potential impact of a bio-oil modifier for asphalt binder on the overall performance of asphalt pavement, in order to properly distinguish whether a particular bio-oil modifier increases or decreases the moisture susceptibility of asphalt binder. Therefore, the goal of this study is a multi-scale investigation of bio-oils with known chemical compositions to determine if there is a correlation between a fundamental property of a bio-oil and the resulting increase or decrease in moisture susceptibility of a binder when it is modified with the bio-oil. For instance, it was found that polarizability of asphalt constituents can be a promising indicator of moisture susceptibility of bitumen. This study will also evaluate the linkage of the fundamental property to newly developed binder-level test methods. It was found that moisture-induced shear thinning of bitumen containing glass beads can differentiate moisture susceptible bitumen samples. Based on the knowledge determined, alternative methods of reducing the moisture susceptibility of asphalt pavement will also be evaluated. It was shown that accumulation of acidic compounds at the interface of bitumen and aggregate could promote moisture damage. It was further found that detracting acidic compounds from the interface could be done by either of neutralizing active site of stone aggregate to reduce affinity for acids or by arresting acidic compounds using active mineral filler. The study results showed there is a strong relation between composition of bitumen and its susceptibility to moisture. This in turn emphasize the importance of integrating knowledge of surface chemistry and bitumen composition into the pavement design and evaluation.

Date Created
2020
Agent

Using Mixture Design Data and Existing Prediction Models to Evaluate the Potential Performance of Asphalt Pavements

158345-Thumbnail Image.png
Description
Several ways exist to improve pavement performance over time. One suggestion is to tailor the asphalt pavement mix design according to certain specified specifications, set up by each state agency. Another option suggests the addition of modifiers that are known

Several ways exist to improve pavement performance over time. One suggestion is to tailor the asphalt pavement mix design according to certain specified specifications, set up by each state agency. Another option suggests the addition of modifiers that are known to improve pavement performance, such as crumb rubber and fibers. Nowadays, improving asphalt pavement structures to meet specific climate conditions is a must. In addition, time and cost are two crucial settings and are very important to consider; these factors sometimes play a huge role in modifying the asphalt mix design needed to be set into place, and therefore alter the desired pavement performance over the expected life span of the structure. In recent studies, some methods refer to predicting pavement performance based on the asphalt mixtures volumetric properties.

In this research, an effort was undertaken to gather and collect most recent asphalt mixtures’ design data and compare it to historical data such as those available in the Long-Term Pavement Performance (LTPP), maintained by the Federal Highway Administration (FHWA). The new asphalt mixture design data was collected from 25 states within the United States and separated according to the four suggested climatic regions. The previously designed asphalt mixture designs in the 1960’s present in the LTPP Database implemented for the test sections were compared with the recently designed pavement mixtures gathered, and pavement performance was assessed using predictive models.

Three predictive models were studied in this research. The models were related to three major asphalt pavement distresses: Rutting, Fatigue Cracking and Thermal Cracking. Once the performance of the asphalt mixtures was assessed, four ranking criteria were developed to support the assessment of the mix designs quality at hand; namely, Low, Satisfactory, Good or Excellent. The evaluation results were reasonable and deemed acceptable. Out of the 48 asphalt mixtures design evaluated, the majority were between Satisfactory and Good.

The evaluation methodology and criteria developed are helpful tools in determining the quality of asphalt mixtures produced by the different agencies. They provide a quick insight on the needed improvement/modification against the potential development of distress during the lifespan of the pavement structure.
Date Created
2020
Agent

A Comparative Study of the Thermal and Radiative Impacts of Photovoltaic Canopies on Pavement Surface Temperatures

141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity.

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

Date Created
2006-12-26
Agent

Laboratory and Field Evaluation of Plant Produced Asphalt Mixtures Containing RAP in Hot Climate Areas

157756-Thumbnail Image.png
Description
The use of Reclaimed Asphalt Pavements (RAP) in newly produced asphalt mixtures has been gaining a wide attention from state Departments of Transportations (DOTs) during the past four decades. However, the performance of these mixtures in harsh and hot climate

The use of Reclaimed Asphalt Pavements (RAP) in newly produced asphalt mixtures has been gaining a wide attention from state Departments of Transportations (DOTs) during the past four decades. However, the performance of these mixtures in harsh and hot climate areas such as Phoenix, Arizona has not been carefully addressed. This research focuses on evaluating the laboratory and field performance of Hot Mix Asphalt Mixtures (HMA) produced with two different RAP contents 15%, and 25%. A road section was identified by the City of Phoenix where three test sections were constructed; the first being a control (0% RAP), the second and the third sections with 15% and 25% RAP contents, respectively. The 25% RAP mixture used a lower Performance Grade (PG) asphalt per local practices. During construction, loose HMA mixtures were sampled and transported to the laboratory for advanced material characterization.

The testing included Dynamic Modulus (DM) test to characterize the stiffness of the material, Flow Number (FN) test to characterize the rutting resistance of the mixtures, IDEAL CT test to characterize the crack initiation properties, C* Fracture test to investigate the crack propagation properties, Uniaxial Fatigue to evaluate fatigue cracking potential, and Tensile Strength Ratio test (TSR) to evaluate the moisture susceptibility. Field cores were obtained from each test section and were tested for indirect tensile strength characteristics. In addition, asphalt binder testing was done on the extracted and recovered binders.

The laboratory results, compared to the control mixture, indicated that adding 15% and 25% RAP to the mix did not have significant effect on the stiffness, improved the rutting potential, had comparable cracking potential, and gave an acceptable passing performance against potential moisture damage. The binder testing that was done on the extracted and recovered binders indicated that the blended RAP binder yields a high stiffness. Based on results obtained from this study, it is recommended that the City of Phoenix should consider incorporating RAP in their asphalt mixtures using these low to moderate RAP contents. In the future implementation process, it is also recommended to include specifications where proper mixture designs are followed and supported with some of the laboratory tests outlined in this research.
Date Created
2019
Agent

Asphalt Binder Parameters and their Relationship to the Linear Viscoelastic and Failure Properties of Asphalt Mixtures

157451-Thumbnail Image.png
Description
Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders

Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders and mixtures behavior are related differ. Further complicating the issues is that distresses in asphalt pavement are dependent on climate, pavement structure, and traffic loads, in addition to factors such as properties of the asphalt mixture itself. Hence, to characterize the multiscale mechanics associated with binder to mixture behaviors, researchers characterized the fatigue and rutting resistance of asphalt binders and mixtures in the laboratory, and established specifications related to how asphalt mixtures would perform in the field.

This dissertation tackles the linkages across length scales with respect to rutting and cracking. Through the literature reviewed, studies regarding the linear and non-linear viscoelastic properties of asphalt mixture and the corresponding bitumen were identified. There was a wealth of data in this area. In addition, the relationship between the laboratory mixture short-term aging and the binder aging conditions were studied, characterized and analyzed.

The literature review showed that there exists a shortage of knowledge that directly examines the relationships between the binder nonlinear viscoelastic damage behaviors and mixture performance. Addressing this knowledge gap is the basic objective of this research. Specifically, the relationships between the non-recoverable creep compliance at 3.2 kPa (Jnr3.2) and the percent of elastic recovery (R3.2) from the multiple stress creep and recovery (MSCR) test and mixture rutting; and between mixture fatigue and binder linear amplitude sweep (LAS) were studied.

Finally, an aging study was performed to ensure that the binder tests properties reflect the condition of the binder during the mixture test when evaluating binder-to-mixture properties. The propensity to oxidize measured by calculating the aging ratio of various aged conditions (RTFO, PAV, and STOA) were gathered and analyzed.
Date Created
2019
Agent

Kuwait residential energy outlook: modeling the diffusion of energy conservation measures

157354-Thumbnail Image.png
Description
The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 emissions.



The energy resources and power generation in Kuwait were studied. The characteristics of the residential buildings along with energy codes of practice were investigated and four building archetypes were developed. Moreover, a baseline of end-use electricity consumption and demand was developed. Furthermore, the baseline energy consumption and demand were projected till 2040. It was found that by 2040, energy consumption would double with most of the usage being from AC. While with lighting, there is a negligible increase in consumption due to a projected shift towards more efficient lighting. Peak demand loads are expected to increase by an average growth rate of 2.9% per year. Moreover, the diffusion of different ECMs in the residential sector was modeled through four diffusion scenarios to estimate ECM adoption rates. ECMs’ impact on CO2 emissions and energy consumption of residential buildings in Kuwait was evaluated and the cost of conserved energy (CCE) and annual energy savings for each measure was calculated. AC ECMs exhibited the highest cumulative savings, whereas lighting ECMs showed an immediate energy impact. None of the ECMs in the study were cost effective due to the high subsidy rate (95%), therefore, the impact of ECMs at different subsidy and rebate rates was studied. At 75% subsidized utility price and 40% rebate only on appliances, most of ECMs will be cost effective with high energy savings. Moreover, by imposing charges of $35/ton of CO2, most ECMs will be cost effective.
Date Created
2019
Agent

Quantifying the Impact of Circular Economy Applied to the Built Environment: A Study of Construction and Demolition Waste to Identify Leverage Points

157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

Date Created
2019
Agent

Effect of using Organosilane with Crumb Rubber Modified Hot Mix Asphalt Mixtures

156880-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

Date Created
2018
Agent