Complexity measurement of cyber physical systems

150489-Thumbnail Image.png
Description
Modern automotive and aerospace products are large cyber-physical system involving both software and hardware, composed of mechanical, electrical and electronic components. The increasing complexity of such systems is a major concern as it impacts development time and effort, as well

Modern automotive and aerospace products are large cyber-physical system involving both software and hardware, composed of mechanical, electrical and electronic components. The increasing complexity of such systems is a major concern as it impacts development time and effort, as well as, initial and operational costs. Towards the goal of measuring complexity, the first step is to determine factors that contribute to it and metrics to qualify it. These complexity components can be further use to (a) estimate the cost of cyber-physical system, (b) develop methods that can reduce the cost of cyber-physical system and (c) make decision such as selecting one design from a set of possible solutions or variants. To determine the contributions to complexity we conducted survey at an aerospace company. We found out three types of contribution to the complexity of the system: Artifact complexity, Design process complexity and Manufacturing complexity. In all three domains, we found three types of metrics: size complexity, numeric complexity (degree of coupling) and technological complexity (solvability).We propose a formal representation for all three domains as graphs, but with different interpretations of entity (node) and relation (link) corresponding to the above three aspects. Complexities of these components are measured using algorithms defined in graph theory. Two experiments were conducted to check the meaningfulness and feasibility of the complexity metrics. First experiment was mechanical transmission and the scope of this experiment was component level. All the design stages, from concept to manufacturing, were considered in this experiment. The second experiment was conducted on hybrid powertrains. The scope of this experiment was assembly level and only artifact complexity is considered because of the limited resources. Finally the calibration of these complexity measures was conducted at an aerospace company but the results cannot be included in this thesis.
Date Created
2011
Agent

Design methodology for modifying an existing internal combustion engine to generate power from a stored air system

150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
Date Created
2011
Agent

Material substitution in legacy system engineering (LSE) with fuzzy logic principles

Description
The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful

The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful information about a failed legacy part as possible and use fuzzy logic rules for identifying the unknown parameter values. Machine elements can fail by any number of failure modes but the most probable failure modes based on the service condition are considered critical failure modes. Three main parameters are of key interest in identifying the critical failure mode of the part. Critical failure modes are then directly mapped to material properties. Target material property values are calculated from material property values obtained from the originally used material and from the design goals. The material database is searched for new candidate materials that satisfy the goals and constraints in manufacturing and raw stock availability. Uncertainty in the extracted data is modeled using fuzzy logic. Fuzzy member functions model the imprecise nature of data in each available parameter and rule sets characterize the imprecise dependencies between the parameters and makes decisions in identifying the unknown parameter value based on the incompleteness. A final confidence level for each material in a pool of candidate material is a direct indication of uncertainty. All the candidates satisfy the goals and constraints to varying degrees and the final selection is left to the designer's discretion. The process is automated by software that inputs incomplete data; uses fuzzy logic to extract more information and queries the material database with a constrained search for finding candidate alternatives.
Date Created
2011
Agent

Reduced order modeling for the nonlinear geometric response of a curved beam

150159-Thumbnail Image.png
Description
The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the

The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order model are carefully reassessed. The selection of the basis functions is first addressed by comparison with the results of proper orthogonal decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. the transverse linear modes of the corresponding flat beam, are shown in fact to be very close to the POD eigenvectors of the normal displacements and thus retained in the present effort. A strong connection is similarly established between the POD eigenvectors of the tangential displacements and the dual modes which are accordingly selected to complement the normal basis functions. The identification of the parameters of the reduced order model is revisited next and it is observed that the standard approach for their identification does not capture well the occurrence of snap-throughs. On this basis, a revised approach is proposed which is assessed first on the static, symmetric response of the beam to a uniform load. A very good to excellent matching between full finite element and ROM predicted responses validates the new identification procedure and motivates its application to the dynamic response of the beam which exhibits both symmetric and antisymmetric motions. While not quite as accurate as in the static case, the reduced order model predictions match well their full Nastran counterparts and support the reduced order model development strategy.
Date Created
2011
Agent