Dynamic programming algorithm for computing temporal logic robustness

151851-Thumbnail Image.png
Description
In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by the given input which is a finite system trajectory, but also quantifies to what extend does the sequence satisfies or violates the MTL specification. The implementation of the algorithm is the DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near linear running time and constant memory requirement depending on the structure of the MTL formula. DP-TALIRO toolbox also integrates new features not supported in its ancestor FW-TALIRO such as parameter replacement, most related iteration and most related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed in this thesis which applies dynamic programming algorithm for time robustness computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. Finally, we present an application where DP-TALIRO is used as the robustness computation core of S-TALIRO for a parameter estimation problem.
Date Created
2013
Agent

The classification of domain concepts in object-oriented systems

151802-Thumbnail Image.png
Description
The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software design activities, however the same cannot be said for reverse engineering activities. The introduction of abstraction to reverse engineering will allow the engineer to move farther away from the details of the system, increasing his ability to see the role that domain level concepts play in the system. In this thesis, we present a technique that facilitates filtering of classes from existing systems at the source level based on their relationship to concepts in the domain via a classification method using machine learning. We showed that concepts can be identified using a machine learning classifier based on source level metrics. We developed an Eclipse plugin to assist with the process of manually classifying Java source code, and collecting metrics and classifications into a standard file format. We developed an Eclipse plugin to act as a concept identifier that visually indicates a class as a domain concept or not. We minimized the size of training sets to ensure a useful approach in practice. This allowed us to determine that a training set of 7:5 to 10% is nearly as effective as a training set representing 50% of the system. We showed that random selection is the most consistent and effective means of selecting a training set. We found that KNN is the most consistent performer among the learning algorithms tested. We determined the optimal feature set for this classification problem. We discussed two possible structures besides a one to one mapping of domain knowledge to implementation. We showed that classes representing more than one concept are simply concepts at differing levels of abstraction. We also discussed composite concepts representing a domain concept implemented by more than one class. We showed that these composite concepts are difficult to detect because the problem is NP-complete.
Date Created
2013
Agent

Scalable knowledge interchange broker: design and implementation for semiconductor supply chain systems

151467-Thumbnail Image.png
Description
A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP models. Recently a single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for forecast bias in customer demand data using different smoothing techniques. The optimization model could then use information provided by the forecast model to make better decisions for the process model. The composition of ISM with LP and DEVS models resulted in the first realization of what is now called the Optimization Simulation Forecast (OSF) platform. It could handle a single echelon supply chain system consisting of single hubs and single products In this thesis, this single-echelon simulation platform is extended to handle multiple echelons with multiple inventory elements handling multiple products. The main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such that ISM interactions with the LP and DEVS models could also be supported. To achieve this, a new, scalable XML schema for the KIB has been developed. The XML schema has also resulted in strengthening the KIB execution engine design. A sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to compute forecast customer demands and safety stocks over multiple hubs and products. Basic examples for semiconductor manufacturing spanning single and two echelon supply chain systems have been developed and analyzed. Experiments using perfect data were conducted to show the correctness of the OSF platform design and implementation. Simple, but realistic experiments have also been conducted. They highlight the kinds of supply chain dynamics that can be evaluated using discrete event process simulation, linear programming optimization, and heuristics forecasting models.
Date Created
2012
Agent

A distributed component-based software framework for laboratory automation systems

Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
Date Created
2012
Agent

Application of a temporal database framework for processing event queries

151371-Thumbnail Image.png
Description
This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event

This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event streams using temporal database operators. Temporal databases and temporal query languages have been a subject of research for more than 30 years and are a natural fit for expressing queries that involve a temporal dimension. However, operators developed in this context cannot be directly applied to event streams. The research extends a preexisting relational framework for event stream processing to support temporal queries. The language features and formal semantic extensions to extend the relational framework are identified. The extended framework supports continuous, step-wise evaluation of temporal queries. The incremental evaluation of TEQL operators is formalized to avoid re-computation of previous results. The research includes the development of a prototype that supports the integrated event and temporal query processing framework, with support for incremental evaluation and materialization of intermediate results. TEQL enables reporting temporal data in the output, direct specification of conditions over timestamps, and specification of temporal relational operators. Through the integration of temporal database operators with event languages, a new class of temporal queries is made possible for querying event streams. New features include semantic aggregation, extraction of temporal patterns using set operators, and a more accurate specification of event co-occurrence.
Date Created
2012
Agent

Model-based development of multi-iRobot simulation and control

Description
This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical

This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical System Laboratory at Arizona State University. The MBDMIRT toolbox runs under MATLAB/Simulink to simulate the movements of multiple iRobots and to control, after verification by simulation, multiple physical iRobots accordingly. It adopts the Simulink/Stateflow, which exemplifies an approach to MBD, to program the behaviors of the iRobots. The MBDMIRT toolbox reuses and augments the open-source MATLAB-Based Simulator for the iRobot Create from Cornell University to run the simulation. Regarding the mechanism of iRobot control, the MBDMIRT toolbox applies the MATLAB Toolbox for the iRobot Create (MTIC) from United States Naval Academy to command the physical iRobots. The MBDMIRT toolbox supports a timer in both the simulation and the control, which is based on the local clock of the PC running the toolbox. In addition to the build-in sensors of an iRobot, the toolbox can simulate four user-added sensors, which are overhead localization system (OLS), sonar sensors, a camera, and Light Detection And Ranging (LIDAR). While controlling a physical iRobot, the toolbox supports the StarGazer OLS manufactured by HAGISONIC, Inc.
Date Created
2012
Agent