Matching Items (43,917)
128434-Thumbnail Image.png
Description

Rationale: Medical masks are commonly used by sick individuals with influenza-like illness (ILI) to prevent spread of infections to others, but clinical efficacy data are absent.

Objective: Determine whether medical mask use by sick individuals with ILI protects well

Rationale: Medical masks are commonly used by sick individuals with influenza-like illness (ILI) to prevent spread of infections to others, but clinical efficacy data are absent.

Objective: Determine whether medical mask use by sick individuals with ILI protects well contacts from related respiratory infections.

Setting: 6 major hospitals in 2 districts of Beijing, China.

Design: Cluster randomised controlled trial.

Participants: 245 index cases with ILI.

Intervention: Index cases with ILI were randomly allocated to medical mask (n=123) and control arms (n=122). Since 43 index cases in the control arm also used a mask during the study period, an as-treated post hoc analysis was performed by comparing outcomes among household members of index cases who used a mask (mask group) with household members of index cases who did not use a mask (no-mask group).

Main Outcome Measure: Primary outcomes measured in household members were clinical respiratory illness, ILI and laboratory-confirmed viral respiratory infection.

Results: In an intention-to-treat analysis, rates of clinical respiratory illness (relative risk (RR) 0.61, 95% CI 0.18 to 2.13), ILI (RR 0.32, 95% CI 0.03 to 3.13) and laboratory-confirmed viral infections (RR 0.97, 95% CI 0.06 to 15.54) were consistently lower in the mask arm compared with control, although not statistically significant. A post hoc comparison between the mask versus no-mask groups showed a protective effect against clinical respiratory illness, but not against ILI and laboratory-confirmed viral respiratory infections.

Conclusions: The study indicates a potential benefit of medical masks for source control, but is limited by small sample size and low secondary attack rates. Larger trials are needed to confirm efficacy of medical masks as source control.

Contributors MacIntyre, Chandini (Author) / Zhang, Yi (Author) / Chughtai, Abrar (Author) / Seale, Holly (Author) / Zhang, Daitao (Author) / Chu, Yanhui (Author) / Zhang, Haiyan (Author) / Rahman, Bayzidur (Author) / Wang, Quanyi (Author) / College of Public Service and Community Solutions (Contributor)
Created 2016-12-01
128435-Thumbnail Image.png
Description

Introduction: Sedentariness is associated with chronic health conditions, impaired cognitive function and obesity. Work contributes significantly to sedentariness because many work tasks necessitate sitting. Few sustained solutions exist to reverse workplace sedentariness. Here, we evaluated a chair and

Introduction: Sedentariness is associated with chronic health conditions, impaired cognitive function and obesity. Work contributes significantly to sedentariness because many work tasks necessitate sitting. Few sustained solutions exist to reverse workplace sedentariness. Here, we evaluated a chair and an under-table device that were designed to promote fidgeting while seated. Our hypothesis was that an under-table leg-fidget bar and/or a fidget-promoting chair significantly increased energy expenditure. We compared these devices with chair-based exercise and walking.

Materials and Methods: We measured energy expenditure and heart rate in 16 people while they sat and worked using a standard chair, an under-desk device that encourages leg fidgeting and a fidget-promoting chair. We compared outcomes with chair-based exercise and walking.

Results: Energy expenditure increased significantly while using either an under-table leg-fidget bar or a fidget-promoting chair, when compared to the standard office chair (standard chair, 76±31 kcal/hour; leg-fidget bar, 98±42 kcal/hour (p<0.001); fidget chair, 89±40 kcal/hour (p=0.03)). However, heart rate did not increase significantly in either case. Bouts of exercise performed while seated provided energetic and heart rate equivalency to walking at 2 mph.

Conclusions: Chairs and devices that promote fidgeting can increase energy expenditure by ∼20–30% but not increase heart rate. Dynamic sitting may be among a lexicon of options to help people move more while at work.

Contributors Koepp, Gabriel A. (Author) / Moore, Graham K. (Author) / Levine, James (Author) / School of Human Evolution and Social Change (Contributor)
Created 2016-09-01
128436-Thumbnail Image.png
Description

Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of

Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells.

Created 2015-11-18
128437-Thumbnail Image.png
Description

Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule.

Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule.

Contributors Walters, Matthew (Author) / Bawuro, Musa (Author) / Christopher, Alfred (Author) / Knight, Alexander (Author) / Kraberger, Simona (Author) / Stainton, Daisy (Author) / Chapman, Hazel (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2017-03-02
128438-Thumbnail Image.png
Description

Here we present a mechanism to infuse ecology into the classroom using a broadly adaptable system. We developed a novel moss-based project that introduces research-based experiences for middle school students, and can be modified for integration into K-16

Here we present a mechanism to infuse ecology into the classroom using a broadly adaptable system. We developed a novel moss-based project that introduces research-based experiences for middle school students, and can be modified for integration into K-16 classrooms. The project is ecologically relevant, facilliating opportunities for students to experience intimate interactions with ecosystem subtleties by asking their own questions. We describe and suggest how students can develop, build, test, and assess microcosm experiments of their own design, learning the process of science by “doing science.” Details on project execution, representative examples of distinctive research-question-based projects are presented. We aim for biology educators to adopt, replicate, modify, and formally assess this relatively simple, low-cost moss-based project across classroom levels. The project provides a chance for students to experience the complexity of a dynamic ecosystem via a research project of their own design as they practice basic tenets of scientific discovery.Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices. Adopters who wish to culture microbes from the moss as an extension of this protocol should follow Biosafety Level 2 practices.

Contributors Shortlidge, Erin (Author) / Hashimoto, James R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2015-12
128439-Thumbnail Image.png
Description

Despite increasing interest in the effects of triclosan and triclocarban on human biology, current knowledge is still limited on the impact of these additives to antimicrobial personal care products on the human microbiome. A carefully designed recent study

Despite increasing interest in the effects of triclosan and triclocarban on human biology, current knowledge is still limited on the impact of these additives to antimicrobial personal care products on the human microbiome. A carefully designed recent study published in mSphere by Poole and colleagues [A. C. Poole et al., mSphere 1(3):e00056-15, 2016, http://dx.doi.org/10.1128/mSphere.00056-15] highlights both the power of novel methodologies for microbiome elucidation and the longstanding challenge of employing small-cohort studies to inform risk assessment for chemicals of ubiquitous use in modern society.

Contributors Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created 2016-05-18
128440-Thumbnail Image.png
Description

I teach an upper-level writing course, Genes, Race, Gender, and Society, designed for Life Science majors, in which I utilize a case study to expose students to ethical ways of thinking. Students first work through the topical case

I teach an upper-level writing course, Genes, Race, Gender, and Society, designed for Life Science majors, in which I utilize a case study to expose students to ethical ways of thinking. Students first work through the topical case study and then are challenged to rethink their responses through the lenses of ethics, taking into account different ethical frameworks. Students then develop their own case study, integrating ethical components. I want to expose my students to this way of thinking because I see technology being driven by the Jurassic Park phenomenon, “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should,” and want future physicians grounded in a sense of how their actions relate to the greater good.

Created 2014-12
128441-Thumbnail Image.png
Description

Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter-1 NH4+-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities

Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter-1 NH4+-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of ethene by D. mccartyi occurred in mineral medium containing ≤2 g liter-1 NH4+-N and in landfill leachate. For the partial reduction of trichloroethene (TCE) to cis-dichloroethene (cis-DCE) at ≥1 g liter-1 NH4+-N, organohalide-respiring dynamics shifted from D. mccartyi and Geobacteraceae to mainly D. mccartyi. An increasing concentration of ammonium was coupled to lower metabolic rates, longer lag times, and lower gene abundances for all microbial processes studied. The methanol fermentation pathway to acetate and H2 was conserved, regardless of the ammonium concentration provided. However, lactate fermentation shifted from propionic to acetogenic at concentrations of ≥2 g liter-1 NH4+-N. Our study findings strongly support a tolerance of D. mccartyi to high ammonium concentrations, highlighting the feasibility of organohalide respiration in ammonium-contaminated subsurface environments.

Contributors Delgado, Anca (Author) / Fajardo-Williams, Devyn (Author) / Kegerreis, Kylie (Author) / Parameswaran, Prathap (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created 2016-04-20
128442-Thumbnail Image.png
Description

Integrating research experiences into undergraduate life sciences curricula in the form of course-based undergraduate research experiences (CUREs) can meet national calls for education reform by giving students the chance to “do science.” In this article, we provide a

Integrating research experiences into undergraduate life sciences curricula in the form of course-based undergraduate research experiences (CUREs) can meet national calls for education reform by giving students the chance to “do science.” In this article, we provide a step-by-step practical guide to help instructors assess their CUREs using best practices in assessment. We recommend that instructors first identify their anticipated CURE learning outcomes, then work to identify an assessment instrument that aligns to those learning outcomes and critically evaluate the results from their course assessment. To aid instructors in becoming aware of what instruments have been developed, we have also synthesized a table of “off-the-shelf” assessment instruments that instructors could use to assess their own CUREs. However, we acknowledge that each CURE is unique and instructors may expect specific learning outcomes that cannot be assessed using existing assessment instruments, so we recommend that instructors consider developing their own assessments that are tightly aligned to the context of their CURE.

Contributors Shortlidge, Erin (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created 2016-12
128443-Thumbnail Image.png
Description

We sequenced and annotated genomes of two haloalkaliphilic Deltaproteobacteria, Geoalkalibacter ferrihydriticus Z-0531T (DSM 17813) and Geoalkalibacter subterraneus Red1T (DSM 23483). During assembly, we discovered that the DSMZ stock culture of G. subterraneus was contaminated. We reisolated G. subterraneus

We sequenced and annotated genomes of two haloalkaliphilic Deltaproteobacteria, Geoalkalibacter ferrihydriticus Z-0531T (DSM 17813) and Geoalkalibacter subterraneus Red1T (DSM 23483). During assembly, we discovered that the DSMZ stock culture of G. subterraneus was contaminated. We reisolated G. subterraneus in axenic culture and redeposited it in DSMZ and JCM.

Contributors Badalamenti, Jonathan P. (Author) / Krajmalnik-Brown, Rosa (Author) / Torres, Cesar (Author) / Bond, Daniel R. (Author) / Biodesign Institute (Contributor)
Created 2015-03-12