Matching Items (43,917)
150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
Contributors Lee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created 2011
150209-Thumbnail Image.png
Description
Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike.

Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural samples, making it uninteresting for isotopic work. However, recent advances in mass spectrometry have made it possible to detect slight differences in the 238U/235U ratio, creating many exciting new opportunities for U isotopic research. Using uranium ore samples from diverse depositional settings from around the world, it is shown that the low-temperature redox transition of uranium (U6+ to U4+) causes measurable fractionation of the 238U/235U ratio. Moreover, it is shown experimentally that a coordination change of U can also cause measurable fractionation in the 238U/235U ratio. This improved understanding of the fractionation mechanisms of U allows for the use of the 238U/235U ratio as a paleoredox proxy. The 238U/235U ratios of carbonates deposited spanning the end-Permian extinction horizon provide evidence of pronounced and persistent widespread ocean anoxia at, or immediately preceding, the extinction boundary. Variable 238U/235U ratios correlated with proxies for initial Cm/U in the Solar System's earliest objects demonstrates the existence of 247Cm in the early Solar System. Proof of variable 238U/235U ratios in meteoritic material forces a substantive change in the previously established procedures of Pb-Pb dating, which assumed an invariant 238U/235U ratio. This advancement improves the accuracy of not only the Pb-Pb chronometer that directly utilizes the 238U/235U ratio, but also for short-lived radiometric dating techniques that indirectly use the 238U/235U ratio to calculate ages of Solar System material.
Contributors Brennecka, Gregory A (Author) / Anbar, Ariel D (Thesis advisor) / Wadhwa, Meenakshi (Thesis advisor) / Herrmann, Achim D (Committee member) / Hervig, Richard (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created 2011
150153-Thumbnail Image.png
Description
A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized.
Contributors Shortridge, Randall (Author) / Chen, Kang Ping (Thesis advisor) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Huang, Huei-Ping (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created 2011
150154-Thumbnail Image.png
Description
As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these materials in advanced concept nanostructured solar cells must be understood. Chief among these is the determination and predication of optimum electronic band structures, including effects such as strain on the band structure, and the material's opto-electronic properties. Nanostructures have a large impact on band structure and electronic properties through quantum confinement. An additional large effect is the change in band structure due to elastic strain caused by lattice mismatch between the barrier and nanostructured (usually self-assembled QDs) materials. To develop a material model for advanced concept solar cells, the band structure is calculated for single as well as vertical array of quantum dots with the realistic effects such as strain, associated with the epitaxial growth of these materials. The results show significant effect of strain in band structure. More importantly, the band diagram of a vertical array of QDs with different spacer layer thickness show significant change in band offsets, especially for heavy and light hole valence bands when the spacer layer thickness is reduced. These results, ultimately, have significance to develop a material model for advance concept solar cells that use the QD nanostructures as absorbing medium. The band structure calculations serve as the basis for multiple other calculations. Chief among these is that the model allows the design of a practical QD advanced concept solar cell, which meets key design criteria such as a negligible valence band offset between the QD/barrier materials and close to optimum band gaps, resulting in the predication of optimum material combinations.
Contributors Dahal, Som Nath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Roedel, Ronald (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created 2011
150155-Thumbnail Image.png
Description
Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete

Rhodoferax antarcticus strain ANT.BR, a purple nonsulfur bacterium isolated from a microbial mat in Ross Island, Antarctica, is the first described anoxygenic phototrophic bacterium that is adapted to cold habitats and is the first beta-proteobacterium to undergo complete genome sequencing. R. antarcticus has unique absorption spectra and there are no obvious intracytoplasmic membranes in cells grown phototrophically, even under low light intensity. Analysis of the finished genome sequence reveals a single chromosome (3,809,266 bp) and a large plasmid (198,615 bp) that together harbor 4,262 putative genes. The genome contains two types of Rubiscos, Form IAq and Form II, which are known to exhibit quite different kinetic properties in other bacteria. The presence of multiple Rubisco forms could give R. antarcticus high metabolic flexibility in diverse environments. Annotation of the complete genome sequence along with previous experimental results predict the presence of structural genes for three types of light-harvesting (LH) complexes, LH I (B875), LH II (B800/850), and LH III (B800/820). There is evidence that expression of genes for the LH II complex might be inhibited when R. antarcticus is under low temperature and/or low light intensity. These interesting condition-dependent light-harvesting apparatuses and the control of their expression are very valuable for the further understanding of photosynthesis in cold environments. Finally, R. antarcticus exhibits a highly motile lifestyle. The genome content and organization of all putative polar flagella genes are characterized and discussed.
Contributors Zhao, Tingting, M.S (Author) / Touchman, Jeffrey (Thesis advisor) / Rosenberg, Michael (Committee member) / Redding, Kevin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created 2011
150156-Thumbnail Image.png
Description
Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on

Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious microstructure. Therefore, these tests lack accurate measurement of the drying rate and data interpretation based on the principles of transport properties is limited. A vacuum-based test method capable of simulating early-age cracks in 2-D cement paste is developed which continuously monitors the weight loss and changes to the surface characteristics. 2-D crack evolution is documented using time-lapse photography. Effects of sample size, w/c ratio, initial curing and fiber content are studied. In the subsequent analysis, the cement paste phase is considered as a porous medium and moisture transport is described based on surface mass transfer and internal moisture transport characteristics. Results indicate that drying occurs in two stages: constant drying rate period (stage I), followed by a falling drying rate period (stage II). Vapor diffusion in stage I and unsaturated flow within porous medium in stage II determine the overall rate of evaporation. The mass loss results are analyzed using diffusion-based models. Results show that moisture diffusivity in stage I is higher than its value in stage II by more than one order of magnitude. The drying model is used in conjunction with a shrinkage model to predict the development of capillary pressures. Similar approach is implemented in drying restrained ring specimens to predict 1-D crack width development. An analytical approach relates diffusion, shrinkage, creep, tensile and fracture properties to interpret the experimental data. Evaporation potential is introduced based on the boundary layer concept, mass transfer, and a driving force consisting of the concentration gradient. Effect of wind velocity is reflected on Reynolds number which affects the boundary layer on sample surface. This parameter along with Schmidt and Sherwood numbers are used for prediction of mass transfer coefficient. Concentration gradient is shown to be a strong function of temperature and relative humidity and used to predict the evaporation potential. Results of modeling efforts are compared with a variety of test results reported in the literature. Diffusivity data and results of 1-D and 2-D image analyses indicate significant effects of fibers on controlling early-age cracks. Presented models are capable of predicting evaporation rates and moisture flow through hydrating cement-based materials during early-age drying and shrinkage conditions.
Contributors Bakhshi, Mehdi (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Zapata, Claudia E. (Committee member) / Arizona State University (Publisher)
Created 2011
150157-Thumbnail Image.png
Description
Traditional design education consists of three phases: perceptual, transitional, and professional. This study explored three independent variables (IVs) as predictors of success in the Transitional Phase of a visual communication design (VCD) program: (a) prior academic performance (as

Traditional design education consists of three phases: perceptual, transitional, and professional. This study explored three independent variables (IVs) as predictors of success in the Transitional Phase of a visual communication design (VCD) program: (a) prior academic performance (as reported by GPA); (b) cognitive style (assessed with Peterson, Deary, and Austin's Verbal Imagery Cognitive Styles Test [VICS] and Extended Cognitive Style Analysis-Wholistic Analytic Test [E-CSA-WA]); and (c) learning style (assessed with Kolb's Learning Style Inventory [LSI] 3.1). To address the research problem and hypothesis, this study examined (a) the relationship between academic performance, cognitive style, and learning style, and visual communication design students' performance in the Transitional Phase; (b) the cognitive style and learning style preferences of visual communication design students as compared with other samples; and (c) how the resulting knowledge can be used to improve instructional design for the Transitional Phase in VCD programs. Multiple regression analysis revealed that 9% of Transitional Phase performance was predicted by studio GPA. No other variables were statistically significant predictors of Transitional Phase performance. However, ANOVA and t tests revealed statistically significant and suggested relationships among components of the independent variables, that indicate avenues for future study. The results are discussed in the context of style-based learning theory, and the cognitive apprenticeship approach to instructional design.
Contributors Murdock, John Boardman (Author) / Sanft, Alfred C (Thesis advisor) / Patel, Mookesh (Thesis advisor) / Weed, Andrew (Committee member) / Arizona State University (Publisher)
Created 2011
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
Contributors Sun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created 2011
150159-Thumbnail Image.png
Description
The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling

The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order model are carefully reassessed. The selection of the basis functions is first addressed by comparison with the results of proper orthogonal decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. the transverse linear modes of the corresponding flat beam, are shown in fact to be very close to the POD eigenvectors of the normal displacements and thus retained in the present effort. A strong connection is similarly established between the POD eigenvectors of the tangential displacements and the dual modes which are accordingly selected to complement the normal basis functions. The identification of the parameters of the reduced order model is revisited next and it is observed that the standard approach for their identification does not capture well the occurrence of snap-throughs. On this basis, a revised approach is proposed which is assessed first on the static, symmetric response of the beam to a uniform load. A very good to excellent matching between full finite element and ROM predicted responses validates the new identification procedure and motivates its application to the dynamic response of the beam which exhibits both symmetric and antisymmetric motions. While not quite as accurate as in the static case, the reduced order model predictions match well their full Nastran counterparts and support the reduced order model development strategy.
Contributors Zhang, Yaowen (Author) / Mignolet, Marc P (Thesis advisor) / Davidson, Joseph (Committee member) / Spottswood, Stephen M (Committee member) / Arizona State University (Publisher)
Created 2011
150160-Thumbnail Image.png
Description
The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree

The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC) is among the most important factors when assessing fluid flow, volume change and shear strength for these soils. The temperature influence on soil moisture flow is a major concern in the design of important engineering systems such as barriers in underground repositories for radioactive waste disposal, ground-source heat pump (GSHP) systems, evapotranspirative (ET) covers and pavement systems.. Accurate modeling of the temperature effect on the SWCC may lead to reduction in design costs, simpler constructability, and hence, more sustainable structures. . The study made use of two possible approaches to assess the temperature effect on the SWCC. In the first approach, soils were sorted from a large soil database into families of similar properties but located on sites with different MAAT. The SWCCs were plotted for each family of soils. Most families of soils showed a clear trend indicating the influence of temperature on the soil water retention curve at low degrees of saturation.. The second approach made use of statistical analysis. It was demonstrated that the suction increases as the MAAT decreases. The statistical analysis showed that even though the plasticity index proved to have the greatest influence on suction, the mean annual air temperature effect proved not to be negligible. In both approaches, a strong relationship between temperature, suction and soil properties was observed. Finally, a comparison of the model based on the mean annual air temperature environmental factor was compared to another model that makes use of the Thornthwaite Moisture Index (TMI) to estimate the environmental effects on the suction of unsaturated soils. Results showed that the MAAT can be a better indicator when compared to the TMI found but the results were inconclusive due to the lack of TMI data available.
Contributors Elkeshky, Maie Mohamed (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created 2011