150209-Thumbnail Image.png
Description
Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was

Historically, uranium has received intense study of its chemical and isotopic properties for use in the nuclear industry, but has been largely ignored by geoscientists despite properties that make it an intriguing target for geochemists and cosmochemists alike. Uranium was long thought to have an invariant 238U/235U ratio in natural samples, making it uninteresting for isotopic work. However, recent advances in mass spectrometry have made it possible to detect slight differences in the 238U/235U ratio, creating many exciting new opportunities for U isotopic research. Using uranium ore samples from diverse depositional settings from around the world, it is shown that the low-temperature redox transition of uranium (U6+ to U4+) causes measurable fractionation of the 238U/235U ratio. Moreover, it is shown experimentally that a coordination change of U can also cause measurable fractionation in the 238U/235U ratio. This improved understanding of the fractionation mechanisms of U allows for the use of the 238U/235U ratio as a paleoredox proxy. The 238U/235U ratios of carbonates deposited spanning the end-Permian extinction horizon provide evidence of pronounced and persistent widespread ocean anoxia at, or immediately preceding, the extinction boundary. Variable 238U/235U ratios correlated with proxies for initial Cm/U in the Solar System's earliest objects demonstrates the existence of 247Cm in the early Solar System. Proof of variable 238U/235U ratios in meteoritic material forces a substantive change in the previously established procedures of Pb-Pb dating, which assumed an invariant 238U/235U ratio. This advancement improves the accuracy of not only the Pb-Pb chronometer that directly utilizes the 238U/235U ratio, but also for short-lived radiometric dating techniques that indirectly use the 238U/235U ratio to calculate ages of Solar System material.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Uranium isotope variations in nature: mechanisms, applications, and implications
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2011
    • bibliography
      Includes bibliographical references (p. 99-112)
    • Field of study: Geological sciences

    Citation and reuse

    Statement of Responsibility

    Gregory A. Brennecka

    Machine-readable links