Description
Mid-air ultrasound haptic technology can enhance user interaction and immersion in extended reality (XR) applications through contactless touch feedback. However, existing design tools for mid-air haptics primarily support the creation of static tactile sensations (tactons), which lack adaptability at runtime. These tactons do not offer the required expressiveness in interactive scenarios where a continuous closed-loop response to user movement or environmental states is desirable. This thesis proposes AdapTics, a toolkit featuring a graphical interface for the rapid prototyping of adaptive tactons—dynamic sensations that can adjust at runtime based on user interactions, environmental changes, or other inputs. A software library and a Unity package accompany the graphical interface to enable integration of adaptive tactons in existing applications. The design space provided by AdapTics for creating adaptive mid-air ultrasound tactons is presented, along with evidence that the design tool enhances Creativity Support Index ratings for Exploration and Expressiveness, as demonstrated in a user study involving 12 XR and haptic designers.
Details
Title
- AdapTics: A Toolkit for Creative Design and Integration of Real-Time Adaptive Mid-Air Ultrasound Tactons
Contributors
- John, Kevin (Author)
- Seifi, Hasti (Thesis advisor)
- Bryan, Chris (Committee member)
- Schneider, Oliver (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2024
Resource Type
Collections this item is in
Note
-
Partial requirement for: M.S., Arizona State University, 2024
-
Field of study: Computer Science