In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system as a genome editing tool. In bacteria and archaea, researchers had found that CRISPR, which stands for clustered regularly interspaced short palindromic repeats, and CRISPR associated proteins, or cas, helped organisms recognize and silence the genetic material of viruses that have infected the cell before. In their experiment, Doudna, Charpentier, and their colleagues found how the specific molecules in bacteria can recognize and cut specific DNA sequences of invading viruses. Doudna, Charpentier, and their colleagues’ discovery of the CRISPR/cas 9 mechanism and proposal of using CRISPR/cas 9 for genetic editing led to the successful engineering of CRISPR/cas 9 as a novel method of editing genomes.
Details
- Jennifer Doudna and Emmanuelle Charpentier’s Experiment About the CRISPR/cas 9 System’s Role in Adaptive Bacterial Immunity (2012)
- Zhu, Meilin (Author)
- Gleason, Kevin M. (Editor)
- Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia. (Publisher)
- Arizona Board of Regents (Publisher)
- Experiment