Description
Tubes and pipelines serve as a major component of several units in power plants and oil, gas, and water transmission. These structures undergo extreme conditions, where temperature and pressure vary, leading to corroding of the pipe over time, creating defects in them. A small crack in these tubes can cause major safety problems, so a regular inspection of these tubes is required. Most power plants prefer to use non-destructive testing procedures, such as long-range ultrasonic testing and phased array ultrasonic testing, to name a few. These procedures can be carried out with the help of crawlers that go inside the pipes. One of the main drawbacks of the current robotic tube inspection robots is the lack of maneuverability over complex tubular structures and the inability to traverse non-ferromagnetic pipelines. The main motivation of this project is to create a robotic system that can grab onto ferromagnetic and non-ferromagnetic tubes and move along those, move onto adjacent tubes, and maneuver around flanges and bends in the tube. Furthermore, most of the robots used for inspection rely on roller balls and suction-based components that can allow the robot to hold on to the curved surface of the tube. These techniques fail when the surface is rough or uneven, which has served as an inspiration to look at friction-based solutions. Lizards are known for their agile locomotion, as well as their ability to grab on any surface irrespective of the surface texture. The work presented here is focused on the design and control of a lizard-inspired tube inspection robot that can be used to inspect complex tubular structures made of any material.
Details
Title
- Design and Control of a Lizard-inspired Tube Inspector Robot
Contributors
- Masurkar, Nihar Dattaram (Author)
- Marvi, Hamidreza (Thesis advisor)
- Dehghan-Niri, Ehsan (Committee member)
- Lee, Hyunglae (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Resource Type
Collections this item is in
Note
-
Partial requirement for: M.S., Arizona State University, 2022
-
Field of study: Engineering