Description
Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors

Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model a hybrid system which uses Collaborative Filtering and Content Based Recommendation. This system models user purchase behavior using weighted user-product preferences (explicit feedback) rather than binary user-product interactions (implicit feedback). Using this a novel sparse adversarial model, Sparse ReguLarized Generative Adversarial Network (SRLGAN), is developed for Cold-Start Recommendation. SRLGAN leverages the sparse user-purchase behavior which ensures training stability and avoids over-fitting on warm users. The performance of SRLGAN is evaluated on two popular datasets and demonstrate state-of-the-art results.
Reuse Permissions
  • Downloads
    PDF (1 MB)

    Details

    Title
    • Adversarial Machine Learning for Recommendation Systems
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2022
    • Field of study: Mechanical Engineering

    Machine-readable links