168367-Thumbnail Image.png
Description
In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field,

In recent years, there has been significant progress in deep learning and computer vision, with many models proposed that have achieved state-of-art results on various image recognition tasks. However, to explore the full potential of the advances in this field, there is an urgent need to push the processing of deep networks from the cloud to edge devices. Unfortunately, many deep learning models cannot be efficiently implemented on edge devices as these devices are severely resource-constrained. In this thesis, I present QU-Net, a lightweight binary segmentation model based on the U-Net architecture. Traditionally, neural networks consider the entire image to be significant. However, in real-world scenarios, many regions in an image do not contain any objects of significance. These regions can be removed from the original input allowing a network to focus on the relevant regions and thus reduce computational costs. QU-Net proposes the salient regions (binary mask) that the deeper models can use as the input. Experiments show that QU-Net helped achieve a computational reduction of 25% on the Microsoft Common Objects in Context (MS COCO) dataset and 57% on the Cityscapes dataset. Moreover, QU-Net is a generalizable model that outperforms other similar works, such as Dynamic Convolutions.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • QU-Net: A Lightweight U-Net based Region Proposal System
    Contributors
    Date Created
    2021
    Subjects
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2021
    • Field of study: Computer Science

    Machine-readable links