Description
In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a

In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a given environment. This helps a pursuer attain an edge over the evader that has conventionally benefited from the uncertainty of the pursuit. The pursuer can utilize this knowledge to enable a faster capture of the evader, as opposed to a pursuer that only knows the evader's current location. Inspired by the function of dorsal anterior cingulate cortex (dACC) neurons in natural predators, the use of a predictive model that is built using an encoder-decoder Long Short-Term Memory (LSTM) Network and can produce a more accurate estimate of the evader's future location is proposed. This enables an even quicker capture of a target when compared to previously used filtering-based methods. The effectiveness of the approach is evaluated by setting up these agents in an environment based in the Modular Open Robots Simulation Engine (MORSE). Cross-domain adaptability of the method, without the explicit need to retrain the prediction model is demonstrated by evaluating it in another domain.
Reuse Permissions
  • Details

    Title
    • Online Prediction for Vision-Based Active Pursuit Using a Domain Agnostic Offline Motion Model
    Contributors
    Agent
    Date Created
    2021
    Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2021
    • Field of study: Computer Science

    Machine-readable links