158548-Thumbnail Image.png
Description
Hyperbolic geometry, which is a geometry which concerns itself with hyperbolic space, has caught the eye of certain circles in the machine learning community as of late. Lauded for its ability to encapsulate strong clustering as well as latent hierarchies

Hyperbolic geometry, which is a geometry which concerns itself with hyperbolic space, has caught the eye of certain circles in the machine learning community as of late. Lauded for its ability to encapsulate strong clustering as well as latent hierarchies in complex and social networks, hyperbolic geometry has proven itself to be an enduring presence in the network science community throughout the 2010s, with no signs of fading into obscurity anytime soon. Hyperbolic embeddings, which map a given graph to hyperbolic space, have particularly proven to be a powerful and dynamic tool for studying complex networks. Hyperbolic embeddings are exploited in this thesis to illustrate centrality in a graph. In network science, centrality quantifies the influence of individual nodes in a graph. Eigenvector centrality is one type of such measure, and assigns an influence weight to each node in a graph by solving for an eigenvector equation. A procedure is defined to embed a given network in a model of hyperbolic space, known as the Poincare disk, according to the influence weights computed by three eigenvector centrality measures: the PageRank algorithm, the Hyperlink-Induced Topic Search (HITS) algorithm, and the Pinski-Narin algorithm. The resulting embeddings are shown to accurately and meaningfully reflect each node's influence and proximity to influential nodes.


Download restricted.
Download count: 1

Details

Title
  • Poincare Embeddings for Visualizing Eigenvector Centrality
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Computer Science 2020

    Machine-readable links