157253-Thumbnail Image.png
Description
Reading partners’ actions correctly is essential for successful coordination, but interpretation does not always reflect reality. Attribution biases, such as self-serving and correspondence biases, lead people to misinterpret their partners’ actions and falsely assign blame after an unexpected event. These

Reading partners’ actions correctly is essential for successful coordination, but interpretation does not always reflect reality. Attribution biases, such as self-serving and correspondence biases, lead people to misinterpret their partners’ actions and falsely assign blame after an unexpected event. These biases thus further influence people’s trust in their partners, including machine partners. The increasing capabilities and complexity of machines allow them to work physically with humans. However, their improvements may interfere with the accuracy for people to calibrate trust in machines and their capabilities, which requires an understanding of attribution biases’ effect on human-machine coordination. Specifically, the current thesis explores how the development of trust in a partner is influenced by attribution biases and people’s assignment of blame for a negative outcome. This study can also suggest how a machine partner should be designed to react to environmental disturbances and report the appropriate level of information about external conditions.


Download restricted.
Download count: 2

Details

Title
  • Attribution biases and trust development in physical human-machine coordination: blaming yourself, your partner or an unexpected event
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2019
    • bibliography
      Includes bibliographical references (pages 40-48)
    • Field of study: Human systems engineering

    Citation and reuse

    Statement of Responsibility

    by Chi-Ping Hsiung

    Machine-readable links