Description
Machine learning models convert raw data in the form of video, images, audio,
text, etc. into feature representations that are convenient for computational process-
ing. Deep neural networks have proven to be very efficient feature extractors for a
variety of machine learning tasks. Generative models based on deep neural networks
introduce constraints on the feature space to learn transferable and disentangled rep-
resentations. Transferable feature representations help in training machine learning
models that are robust across different distributions of data. For example, with the
application of transferable features in domain adaptation, models trained on a source
distribution can be applied to a data from a target distribution even though the dis-
tributions may be different. In style transfer and image-to-image translation, disen-
tangled representations allow for the separation of style and content when translating
images.
This thesis examines learning transferable data representations in novel deep gen-
erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-
ial methods and cross-domain weight sharing in a neural network to extract trans-
ferable representations. These transferable interpretations can then be decoded into
the original image or a similar image in another domain. The Explicit Disentangling
Network (EDN) utilizes generative methods to disentangle images into their core at-
tributes and then segments sets of related attributes. The EDN can separate these
attributes by controlling the ow of information using a novel combination of losses
and network architecture. This separation of attributes allows precise modi_cations
to speci_c components of the data representation, boosting the performance of ma-
chine learning tasks. The effectiveness of these models is evaluated across domain
adaptation, style transfer, and image-to-image translation tasks.
text, etc. into feature representations that are convenient for computational process-
ing. Deep neural networks have proven to be very efficient feature extractors for a
variety of machine learning tasks. Generative models based on deep neural networks
introduce constraints on the feature space to learn transferable and disentangled rep-
resentations. Transferable feature representations help in training machine learning
models that are robust across different distributions of data. For example, with the
application of transferable features in domain adaptation, models trained on a source
distribution can be applied to a data from a target distribution even though the dis-
tributions may be different. In style transfer and image-to-image translation, disen-
tangled representations allow for the separation of style and content when translating
images.
This thesis examines learning transferable data representations in novel deep gen-
erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-
ial methods and cross-domain weight sharing in a neural network to extract trans-
ferable representations. These transferable interpretations can then be decoded into
the original image or a similar image in another domain. The Explicit Disentangling
Network (EDN) utilizes generative methods to disentangle images into their core at-
tributes and then segments sets of related attributes. The EDN can separate these
attributes by controlling the ow of information using a novel combination of losses
and network architecture. This separation of attributes allows precise modi_cations
to speci_c components of the data representation, boosting the performance of ma-
chine learning tasks. The effectiveness of these models is evaluated across domain
adaptation, style transfer, and image-to-image translation tasks.
Download count: 1
Details
Title
- Learning Transferable Data Representations Using Deep Generative Models
Contributors
- Eusebio, Jose Miguel Ang (Author)
- Panchanathan, Sethuraman (Thesis advisor)
- Davulcu, Hasan (Committee member)
- Venkateswara, Hemanth (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
-
Masters Thesis Computer Science 2018