Description
There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during model validation where the total error between physical observation and model prediction must be characterized. It is necessary to quantify the effects of uncertainties at every length scale in order to fully understand their impact on the structural response. Material variability may include variations in fiber volume fraction, fiber dimensions, fiber waviness, pure resin pockets, and void distributions. Therefore, a stochastic modeling framework with scale dependent constitutive laws and an appropriate failure theory is required to simulate the behavior and failure of polymer matrix composite structures subjected to complex loadings. Additionally, the variations in environmental conditions for aerospace applications and the effect of these conditions on the polymer matrix composite material need to be considered. The research presented in this dissertation provides the framework for stochastic multiscale modeling of composites and the characterization data needed to determine the effect of different environmental conditions on the material properties. The developed models extend sectional micromechanics techniques by incorporating 3D progressive damage theories and multiscale failure criteria. The mechanical testing of composites under various environmental conditions demonstrates the degrading effect these conditions have on the elastic and failure properties of the material. The methodologies presented in this research represent substantial progress toward understanding the failure and effect of variability for complex polymer matrix composites.
Download count: 7
Details
Title
- Stochastic multiscale modeling and statistical characterization of complex polymer matrix composites
Contributors
- Johnston, Joel Philip (Author)
- Chattopadhyay, Aditi (Thesis advisor)
- Liu, Yongming (Committee member)
- Jiang, Hanqing (Committee member)
- Dai, Lenore (Committee member)
- Rajadas, John (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: Ph.D., Arizona State University, 2016
-
bibliographyIncludes bibliographical references (pages 158-174)
-
Field of study: Mechanical engineering
Citation and reuse
Statement of Responsibility
by Joel Philip Johnston