154713-Thumbnail Image.png
Description
This paper details ink chemistries and processes to fabricate passive microfluidic devices using drop-on-demand printing of tetraethyl-orthosilicate (TEOS) inks. Parameters space investigation of the relationship between printed morphology and ink chemistries and printing parameters was conducted to demonstrate that

This paper details ink chemistries and processes to fabricate passive microfluidic devices using drop-on-demand printing of tetraethyl-orthosilicate (TEOS) inks. Parameters space investigation of the relationship between printed morphology and ink chemistries and printing parameters was conducted to demonstrate that morphology can be controlled by adjusting solvents selection, TEOS concentration, substrate temperature, and hydrolysis time. Optical microscope and scanning electron microscope images were gathered to observe printed morphology and optical videos were taken to quantify the impact of morphology on fluid flow rates. The microscopy images show that by controlling the hydrolysis time of TEOS, dilution solvents and the printing temperature, dense or fracture structure can be obtained. Fracture structures are used as passive fluidic device due to strong capillary action in cracks. At last, flow rate of passive fluidic devices with different thickness printed at different temperatures are measured and compared. The result shows the flow rate increases with the increase of device width and thickness. By controlling the morphology and dimensions of printed structure, passive microfluidic devices with designed flow rate and low fluorescence background are able to be printed.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Printed passive microfluidic devices using TEOS reactive inks
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (page 33)
    • Field of study: Mechanical engineering

    Citation and reuse

    Statement of Responsibility

    by Yiwen Huang

    Machine-readable links