Description
Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from surveil- lance and reconnaissance to agriculture and large area mapping. Although in most applications single quadrotors are used, there is an increasing interest in architectures controlling multiple quadrotors executing a collaborative task. This thesis introduces a new concept of control involving more than one quadrotors, according to which two quadrotors can be physically coupled in mid-flight. This concept equips the quadro- tors with new capabilities, e.g. increased payload or pursuit and capturing of other quadrotors. A comprehensive simulation of the approach is built to simulate coupled quadrotors. The dynamics and modeling of the coupled system is presented together with a discussion regarding the coupling mechanism, impact modeling and additional considerations that have been investigated. Simulation results are presented for cases of static coupling as well as enemy quadrotor pursuit and capture, together with an analysis of control methodology and gain tuning. Practical implementations are introduced as results show the feasibility of this design.
Download count: 5
Details
Title
- Dynamics, modeling, simulation and control of mid-flight coupling of quadrotors
Contributors
- Larsson, Daniel (Author)
- Artemiadis, Panagiotis (Thesis advisor)
- Marvi, Hamidreza (Committee member)
- Berman, Spring (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2016
-
bibliographyIncludes bibliographical references (pages 68-69)
-
Field of study: Aerospace engineering
Citation and reuse
Statement of Responsibility
by Daniel Larsson