Full metadata
Title
Understanding the mechanistic regulation of Rubisco activase using steady state enzyme kinetic analysis of ATPase activity
Description
ABSTRACT
The catalytic chaperone of Rubisco is AAA+ protein Rubisco activase (Rca), which hydrolyzes ATP and thus undergoes conformational change, helping in reactivating Rubisco. Rca reactivates Rubisco plausibly by removing its C- terminal tail from the opening of its active site thus releasing the inhibitor, a sugar phosphate molecule. Rubisco and Rca are regulated by the stromal environment, which includes the ATP/ADP ratio, Mg2+ concentration, redox potential etc. Here the mechanistic regulation of tobacco β-Rca was studied using steady state enzyme kinetics in terms of product inhibition, Mg2+ activation, cooperativity and asymmetry. A continuous Pi measurement assay was developed, and using this assay catalytic parameters were obtained, such as kcat 20.6 ± 6.5 min-1 ( n = 9) and KM 0.113 ± 0.033 mM (n = 4). A Mg2+ induced increase of substrate affinity in Rca was observed, where the KM changes from 0.452 mM to 0.069 mM, with the changing of free Mg2+ concentration from 0.1 mM to 10 mM. Fitting the catalytic efficiency as a function free Mg2+ concentration by use of a binding model gave a Hill coefficient of 2.2, which indicates a secondary magnesium binding site on the enzyme. A 8.4 fold increase of catalytic efficiency with increasing magnesium from 0.1 mM to 6.5 mM suggests a significant Mg2+ induced regulation of Rca. Moderate product inhibition was observed in inhibition study (Ki = 0. 063 ± 0.018 mM). A positive cooperativity (nH = 2.1) in ATP hydrolysis between two subunits was observed in the presence of 0.132 mM ADP, but not in the absence of ADP. This indicated the presence of two different classes of subunits, suggesting an asymmetric model for the enzyme. Inhibited Rubisco (ER) up to 20 μM concentration did not affect ATPase activity, in line with previous reports. The concentration dependent correlation of Rca activity (tobacco β-Rca) and oligomerization (cotton β-Rca) suggested that the dimer maybe the most active oligomeric species. A nucleotide induced thermal stabilization of Rca was observed, where ADP is more stabilizing than ATP in the absence of Mg2+. Mg2+ has a small destabilizing effect alone and in presence of the ADP, but a stabilizing effect in presence of ATP. The ligand induced thermal stability was similar for cotton and tobacco β-Rca.
The catalytic chaperone of Rubisco is AAA+ protein Rubisco activase (Rca), which hydrolyzes ATP and thus undergoes conformational change, helping in reactivating Rubisco. Rca reactivates Rubisco plausibly by removing its C- terminal tail from the opening of its active site thus releasing the inhibitor, a sugar phosphate molecule. Rubisco and Rca are regulated by the stromal environment, which includes the ATP/ADP ratio, Mg2+ concentration, redox potential etc. Here the mechanistic regulation of tobacco β-Rca was studied using steady state enzyme kinetics in terms of product inhibition, Mg2+ activation, cooperativity and asymmetry. A continuous Pi measurement assay was developed, and using this assay catalytic parameters were obtained, such as kcat 20.6 ± 6.5 min-1 ( n = 9) and KM 0.113 ± 0.033 mM (n = 4). A Mg2+ induced increase of substrate affinity in Rca was observed, where the KM changes from 0.452 mM to 0.069 mM, with the changing of free Mg2+ concentration from 0.1 mM to 10 mM. Fitting the catalytic efficiency as a function free Mg2+ concentration by use of a binding model gave a Hill coefficient of 2.2, which indicates a secondary magnesium binding site on the enzyme. A 8.4 fold increase of catalytic efficiency with increasing magnesium from 0.1 mM to 6.5 mM suggests a significant Mg2+ induced regulation of Rca. Moderate product inhibition was observed in inhibition study (Ki = 0. 063 ± 0.018 mM). A positive cooperativity (nH = 2.1) in ATP hydrolysis between two subunits was observed in the presence of 0.132 mM ADP, but not in the absence of ADP. This indicated the presence of two different classes of subunits, suggesting an asymmetric model for the enzyme. Inhibited Rubisco (ER) up to 20 μM concentration did not affect ATPase activity, in line with previous reports. The concentration dependent correlation of Rca activity (tobacco β-Rca) and oligomerization (cotton β-Rca) suggested that the dimer maybe the most active oligomeric species. A nucleotide induced thermal stabilization of Rca was observed, where ADP is more stabilizing than ATP in the absence of Mg2+. Mg2+ has a small destabilizing effect alone and in presence of the ADP, but a stabilizing effect in presence of ATP. The ligand induced thermal stability was similar for cotton and tobacco β-Rca.
Date Created
2015
Contributors
- Hazra, Suratna (Author)
- Wachter, Rebekka M. (Thesis advisor)
- Fromme, Petra (Committee member)
- Frasch, Wayne D (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 127 pages : illustrations (mostly color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.29891
Statement of Responsibility
by Suratna Hazra
Description Source
Retrieved on Aug. 3, 2015
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2015
bibliography
Includes bibliographical references
Field of study: Biochemistry
System Created
- 2015-06-01 08:12:10
System Modified
- 2021-08-30 01:29:00
- 3 years 2 months ago
Additional Formats