Description
ABSTRACT
The catalytic chaperone of Rubisco is AAA+ protein Rubisco activase (Rca), which hydrolyzes ATP and thus undergoes conformational change, helping in reactivating Rubisco. Rca reactivates Rubisco plausibly by removing its C- terminal tail from the opening of its active site thus releasing the inhibitor, a sugar phosphate molecule. Rubisco and Rca are regulated by the stromal environment, which includes the ATP/ADP ratio, Mg2+ concentration, redox potential etc. Here the mechanistic regulation of tobacco β-Rca was studied using steady state enzyme kinetics in terms of product inhibition, Mg2+ activation, cooperativity and asymmetry. A continuous Pi measurement assay was developed, and using this assay catalytic parameters were obtained, such as kcat 20.6 ± 6.5 min-1 ( n = 9) and KM 0.113 ± 0.033 mM (n = 4). A Mg2+ induced increase of substrate affinity in Rca was observed, where the KM changes from 0.452 mM to 0.069 mM, with the changing of free Mg2+ concentration from 0.1 mM to 10 mM. Fitting the catalytic efficiency as a function free Mg2+ concentration by use of a binding model gave a Hill coefficient of 2.2, which indicates a secondary magnesium binding site on the enzyme. A 8.4 fold increase of catalytic efficiency with increasing magnesium from 0.1 mM to 6.5 mM suggests a significant Mg2+ induced regulation of Rca. Moderate product inhibition was observed in inhibition study (Ki = 0. 063 ± 0.018 mM). A positive cooperativity (nH = 2.1) in ATP hydrolysis between two subunits was observed in the presence of 0.132 mM ADP, but not in the absence of ADP. This indicated the presence of two different classes of subunits, suggesting an asymmetric model for the enzyme. Inhibited Rubisco (ER) up to 20 μM concentration did not affect ATPase activity, in line with previous reports. The concentration dependent correlation of Rca activity (tobacco β-Rca) and oligomerization (cotton β-Rca) suggested that the dimer maybe the most active oligomeric species. A nucleotide induced thermal stabilization of Rca was observed, where ADP is more stabilizing than ATP in the absence of Mg2+. Mg2+ has a small destabilizing effect alone and in presence of the ADP, but a stabilizing effect in presence of ATP. The ligand induced thermal stability was similar for cotton and tobacco β-Rca.
The catalytic chaperone of Rubisco is AAA+ protein Rubisco activase (Rca), which hydrolyzes ATP and thus undergoes conformational change, helping in reactivating Rubisco. Rca reactivates Rubisco plausibly by removing its C- terminal tail from the opening of its active site thus releasing the inhibitor, a sugar phosphate molecule. Rubisco and Rca are regulated by the stromal environment, which includes the ATP/ADP ratio, Mg2+ concentration, redox potential etc. Here the mechanistic regulation of tobacco β-Rca was studied using steady state enzyme kinetics in terms of product inhibition, Mg2+ activation, cooperativity and asymmetry. A continuous Pi measurement assay was developed, and using this assay catalytic parameters were obtained, such as kcat 20.6 ± 6.5 min-1 ( n = 9) and KM 0.113 ± 0.033 mM (n = 4). A Mg2+ induced increase of substrate affinity in Rca was observed, where the KM changes from 0.452 mM to 0.069 mM, with the changing of free Mg2+ concentration from 0.1 mM to 10 mM. Fitting the catalytic efficiency as a function free Mg2+ concentration by use of a binding model gave a Hill coefficient of 2.2, which indicates a secondary magnesium binding site on the enzyme. A 8.4 fold increase of catalytic efficiency with increasing magnesium from 0.1 mM to 6.5 mM suggests a significant Mg2+ induced regulation of Rca. Moderate product inhibition was observed in inhibition study (Ki = 0. 063 ± 0.018 mM). A positive cooperativity (nH = 2.1) in ATP hydrolysis between two subunits was observed in the presence of 0.132 mM ADP, but not in the absence of ADP. This indicated the presence of two different classes of subunits, suggesting an asymmetric model for the enzyme. Inhibited Rubisco (ER) up to 20 μM concentration did not affect ATPase activity, in line with previous reports. The concentration dependent correlation of Rca activity (tobacco β-Rca) and oligomerization (cotton β-Rca) suggested that the dimer maybe the most active oligomeric species. A nucleotide induced thermal stabilization of Rca was observed, where ADP is more stabilizing than ATP in the absence of Mg2+. Mg2+ has a small destabilizing effect alone and in presence of the ADP, but a stabilizing effect in presence of ATP. The ligand induced thermal stability was similar for cotton and tobacco β-Rca.
Details
Title
- Understanding the mechanistic regulation of Rubisco activase using steady state enzyme kinetic analysis of ATPase activity
Contributors
- Hazra, Suratna (Author)
- Wachter, Rebekka M. (Thesis advisor)
- Fromme, Petra (Committee member)
- Frasch, Wayne D (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2015
- bibliographyIncludes bibliographical references
- Field of study: Biochemistry
Citation and reuse
Statement of Responsibility
by Suratna Hazra